Detection of age-specific genetic effects for age-at-onset complex traits

Introduction

The advent of genome-wide association (GWA) studies has enabled to better understand the genetic
architecture and estimate its properties for many important complex traits. Among those are traits related
to age-at-onset that stand out from others as they can almost always be right censored, meaning that we
might only be able to measure the last known time without the event. Therefore, time-to-event traits have
posed certain difficulties potentially leading to hampered statistical power or simply neglecting those traits
from analyses.

Recently, the methodology for conducting GWA studies for time-to-event traits has greatly improved. The
usage of martingale residuals has enabled combining censoring and timing information into one summary
statistic which can be then plugged in for other available methods and software for further analysis [1,2]. For
joint marker effect estimation that combines censoring and timing informations in the partial likelihood in
regularised regression framework there exists Cox-LASSO [3] implementation snpnet designed for variable
selection and estimation in high-dimensional marker data [4)5]. To analyse time-to-event traits in mixed model
framework the COXMEG method has recently been proposed [6], although it might not yet be completely
scalable for biobank-scale data sets. Joint effect size estimation along with variable selection and effect size
classification has been lately implemented within Bayesian framework in the BayesW model [7] that also
enables partitioning genetic variance between different annotations. The latter approach has been shown to
be efficient for genetic prediction and effect size classification enables better understanding of the genetic
architecture.

Regardless of the advances proposed by the previous models, all of the previously described methods
are assuming that the marker effect sizes on the trait remain constant throughout individual’s life. That
underlying assumption is definitely natural for many complex traits that are not describing age-at-onset. For
example, once an individual has reached maximal growth, the height will remain relatively similar throughout
the life and thus it is reasonable to model constant marker effect sizes having impacted height. In contrast
to that, age-at-onset traits are affected by the hazard of onset that could vary throughout the life and it is
possible that the changes in hazard are the result of markers having different effect throughout individual’s
life.

There exists substantial evidence that genetic effects on individual’s phenotype can vary significantly
throughout lifespan. For example, higher ages have been shown to have lower heritabilities across many

continous complex traits [8].

Results
Discussion

Methods

Model outline

In the BayesW model lifespan T; for an individual i follows a Weibull distribution such that E(log T;|u, x4, 8, &) =

w+ z;8 and Var(log T;|p, x;, 8, ) = 6’(’;. Therefore as a log-linear model it can be written down as
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where K is the Euler-Mascheroni constant and w; is an error term coming from the standard extreme value

distribution. This model can be represented via hazard function \;(t) for individual i by

\i(t) = at* texp(—a(u + z;8) — K). (2)

We will now expand the model by allowing different effect sizes throughout time. Suppose that we have
two time intervals [0, 7) and |7, 00) that we will call epoch one and epoch two. Both of those epochs have their
time-specific effect sizes that will be expressed only within those intervals. Lifespan T; for individual ¢ has to

belong to either of those epochs. We will define the hazard function for the individual i in the following way

" at*Lexp(—a(p+z:8') — K), ift<rt 3
i =

ot ! exp(—oz(u +z;6%) — K), ift >,
where B! and 2 are vectors of M elements corresponding to M marker effects in first and second epoch
respectively. Let’s denote residual vectors for individual i in the following way ¢! = log(t;) — u — z; 81,
€2 =log(t;) — p— ;% e =log(r) — p— ;4% and e} = log(7) — pu — ;2. Given our definition of the hazard

function we can find the corresponding survival function for individual 7:

Si(t) = exp[—exp(asg—K)], ift<r
' exp[— exp(oas2 — K) — exp(aaf’ — K) + exp(ozej;l — K)], ift>r.

(3

The expression for the likelihood can be factorised into two parts

n

p(DI©) = [Tt “Si(ts) = T a(ta) ¥ Sitts) T (Mi(ta)™ Si(ts) (5)

i=1 i€E i€cEs
where D denotes the data, © denotes all of the model parameters, d; is the censoring indicator for individual
i (d; = 1 if event happened, 0 otherwise), E, is a set of indices for individuals whose last known time without
event belongs to epoch gq.

The log-likelihood of the model is following:

log(p(D|©)) = d*log(a') + d*log(a®) — Kd — d'a’p — d*a®p+
(et —1) Z log(t;)d; — o' Z diz: 3t — Z exp(a'e; — K)+

i€k i€ By i€E,
(a® —1) Z log(t;)d; — o Z d;xi /% — Z exp(a’e} — K)+
i€E> i€E> i€Ey
Z exp(a’e} — K) — Z exp(ale? - K), (6)
1€FEo i€ Fy

where d', d?> and d are the numbers of uncensored individuals in epoch 1, epoch 2 and in total.
We will fix the following priors for the parameters. Let the prior distribution of a? be a gamma distribution
with parameters aq, Ko
p(ad) o (a9)* ! exp(—kga?), (7)

the prior for ;1 be normal with variance parameter aﬁ:

pli) exp(—giiﬁ). ®)
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The rest of the parameters are epoch-specific. Suppose that the effects for marker j for epochs one and s

two follow a bivariate normal distribution 57
(B, B0, 082:7] =kv; =1~ N(0,8),5=1,...,M (9)
where 58
- 721 Ch1 poc1oa2y/Cr1Cia (10)
kKl =
poc1oG2V Cr1Cre 025Cl2

and here we assume that Cg; and Cjy are positive. Thus, given that the mixture components Cy1 and Cjs are  so
positive and finding the conditional distributions based on equation [9] the prior distributions for the effect o
sizes are 61

1152 2 2 1 2 0c1VCk1 g2 5 2

| B5 06,0 =k =l~N|p———=0%,06,Cr1(1 — 11

5] |ﬂj7 G1:9G2) 75 » Y <pUG2\/C’7l2 7 “G1 kl( p )> ( )

0c2vVCrp2 1
061V Cr1

However, it can happen that when we evaluate effect for one epoch, then the effect size in the other epoch &

62

B18), 021,057} = b = L~ N (p 102,Cia(l p2>) . (12)

has been set to 0. For this situation we will define the corresponding priors using the following normal e

distribution if 5? =0 and 'y]z =0: 65
B}\B? = O,Uél,'y]1 = k,'yjz =0~ N (0,08,Cr1(1 —p?)) (13)

and analogously if ﬁ]l =0 (and thus 'yjl» = 0) then we define our prior for ﬁ]l as 66
B31B) = 0,082,7; =k, =0~ N (0,08,Ci2(1 = p%)) (14)

The prior for 77, ¢ € {1,2} is multinomial: 6
pfIn) = moy " e, (15)

the prior probabilities of belonging to each of the mixture distributions k are stored in L + 1-dimensional s

vector ¢ with the prior for 7? a Dirichlet distribution 69
p(n?) = Dirichlet(py,), (16)
where I(+) is the indicator function and py, is the L + 1-dimensional vector with prior values. 70

log p(u|D, o, B, B?) = const — day — Z exp(as} -K) - Z exp(ae? - K)+ Z exp(a&t;l - K)

= = i€E,
1
- Z exp(agl — K) — —p* (17)
_ 202
i€Fo H
log p(u|D,at, a?, B, B?) = const—d o' u—d?a? u— Z exp(ozlez1 — K)— Z exp a’e? — +Z exp el — )
1€E i€ Fo 1€ FEy
Ly
fZexpozs -K) - 2571 (18)
1€ FEo H



1 1 a1y _ ] 11,1 1.1 1.3
logp(p'|D,at, ) = const — d'atp' — ;3: exp(a'e; — K) — ;3: exp(a'el — K) — @M (19)
[3 1 7 2

log p(u?|D,a?,3%) = const — d?a’u? Zexp(a2€2fK) + Zexp(azszlfK) —

2
: : 202"
i€E; i€Eq ©

log p(a|D, i, B, B?) = const+(d+ap—1) log(a) —dau—koa+a Z log(t;)d;—« Z dizi - Z exp ael — )

i€ E, i€ F i€E,
+« Z log(t;)d; — « Z diz; 3% — Z exp(cuq2 —K) + Z exp(aa;l — K) — Z exp(as?’ —K)
1€Fo 1€Fo i€Fo 1€Fo i€ Fo
= const + (d + ap — 1) log(a) + Z dillog(t;) — p — z:f'] + a Z dillog(t;) — p — z; %]+
i€Ey i€ Eo
exp(—K) |- Z exp(ae}) — Z exp(ae?) + Z exp(as}) — Z exp(ael) | — ko (21)
i€y 1€ FEy 1€ FEy 1€ FEy

log p(a*| D, u, B, B?) = const + (d' + ap — 1) log(al) dratpy — koot + ot Z log(t;)d; — o' Z diz; B

i€k i€ By
— Z exp(cvlaz1 fK) + Z exp( ! ‘3 K)
i€E; i€Es
= const + (d' + ap — 1) log(a +oz1 Zd llog(t;) — p — i8]+
i€k
exp(—K) |- Z exp(a'e}) — Z exp(a'el) | — ko' (22)
i€Ey i€Es

log p(a?|D, u, B, B?) = const + (d* + ap — 1) log(aQ) — d?0®p — Koa?

+O¢2Zlog d—QQdelﬂ—Zexp(22 K)+Zexp(a254—K)

1€Fo i€Fo 1€l 1€l
= const + (d? 4+ ag — 1)log +a2 Z dillog(t;) — p — z; %]+
1€ Fg
exp(—K) l— Z exp(a’e?) + Z exp(oﬂs?)] — Koo (23)
i€Ea i€Es

Ing(ﬂ]HDaﬂaaaO—élvaéQ’ﬂ?a’Y} = k7’yj2 =1# 0) = const — 056]1 Z dlxlj

i€ Fy

1 C
— Z eXp(OéSZ1 —K) - Z eXp(Oﬁ? - K) 20—Glck1(1 — ) ( ) lm

1€E 1€ Eo

2
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lng(ﬁJHD,M,Oé,O'él,U?;Q,ﬁ?,’}/]l' = ka’Y_]Q = 0) = const — aﬁjl Z dixij

1€EF
— Y explag; — K) — Y exp(ag] — K) — (531)2 (25)
i€Ey z i€Es z 2081 Cr(1 = p?)
logp(ﬂ]2|D,u, Q, O—é‘lv J%‘Q,ﬂ}a"y} = k?VJQ =1 # 0) = const — 056]2 Z dlxlj
i€E;
1 VCia
_ Z exp(agl — K) + Z exp(ag; —K) — —5———5 (52 062V Ci2 ) (26)
i€Es i€y 202,Ci2(1 — p?) Cr1 ’
Ing(BﬂDv#’ Q, Gélv Uéz:ﬂ}a’ﬁ = ka’Y]z = O) = const — O‘BJQ Z dT‘ij
1€FEy
— Z exp(a52 - K) + Z exp(as4 — K) — LQ)Z (27)
i€E, l i€E, ' 202,Ci2(1 - p?)
log p(6;|D, j1, v, B*, B2,6%, 6%) = const — a5j< Z zid; + Z Zijdi) - Z exp(ag; — K)
i€Fy 1€E; icE; (28)
— Z exp(ae; — K) + Z exp(as} — K) — Z exp(ae — K) — 552
i€E; i€Bs i€E; 3
log p(3;|D. v, B, 5%,6,8%) = comst — ad} D | zj;di = Y exp(ae; — K) = ) exp(ae} — K) — 752
i€E 1€EE; i€ By g
(29)
1
log p(3}1D, s, B, 57,6, 0) = const — a8 Y zhdi = 3 exp(as] — K) + ) exp(as! - K) — 550”
i€ i€y i€Ey 75
(30)
ca1vCiig2 | £ 062VCia g1 L £ ()
We define 7}, := PocavCia i 7 and 7?2, ;== 0c1VCi 73 7 )
0, [=0 0, k=0
1

o

1

Kl =
\/i\/l +a?Cr (1 - p?)od, (Z’LEEl “’2 exp(uj — azigny) + i, x?j exp(uf — awijny))

g2 =

\/5\/1 + a?2C2(1 — p?)od, (ZzeEz x2 exp(u? — axijni;) — > icE, x2 exp(u? axijn,%l))

71



—a Y diig(11V2 202, Cra (1 — 02) + )+

i€y

——— = =exp

9L (Gr1/2t,) {
T

Z [ exp <U11 - al’ij(ﬁ'kl\/ﬁtr\/QUélckl(l - )+ 77%1)) + eXP(U%)]

i€y

+ Z [— exp <U§ - axij(&kl\/itr\/Qaélel(l - p?) + Uliz)) + eXP(U?)] - (5'k1\/§tr)2}

1€ FEy

2(619V/2t,
gk(liQFg\[) B exp{ —a Y diwij(612V2t\/202,Ci2(1 = p%) + niy)+

1€ FEy
Z {— exp (u? — i (631V 2t /202, Cla(1 — p2) + nzl)) + exp(u?)}
i€Fy
+ Z [GXP <u;l — awj (5122t /202, Cra(1 — p2) + 711%1)) - exp(uf)} - (612\/§tr)2}
i€ Bs
Derivation for the sparse calculations 7

We define M; = exp(—an,ilsiJ and N; = Mj_gj = exp (anil%).

1 1 _
b1 = 7 1+ a®Ca (1 — p*)og —N; <(§j)2 Z exp(u;) + Z exp(ug’)
2 5 i€Fy i€E,
€i;=0 €i;=0
-0.5
+ M; ((1 —&)? Z exp(u;) + Z exp(u?) +(2—&)*M; Z exp(u;) + Z exp(u‘?) ))]
by bayait] bayei by

Let us define B; = exp(ag—;(s\/QCkloél(l —p?) + 7711:1)) and C; = exp<fs%(s\/20kloél(1 —p?) + 77,%[)).

Z exp (uzl - om:ij(&kl\/ﬁt,.\/QaélC’kl(l —p?) + 771%1)) + Z exp (uf’ - axij(&kle?tr\/Qaélel(l —p?) + 77%1)) =

i€F, 1€ Fo

Bj( Z exp(u%) + Z exp(uf) + Cj< Z exp(u}) + Z exp(u?) + Cj< Z exp(u%) + Z exp(u?))))
1€F, 1€ FEo i€ Eq i€ FEo i€ Eq i€ Eo
£i;=0 £i;=0 &ij=1 &ij=1 £ij=2 £ij=2

J

. . . —04[3]1 75} (15—]5}
To rewrite equations [24 and |27, we define H; = exp (—~ ) and G; = H ; =exp(——).
J

> exp(allog(t) — p—2:8") = K) + > exp(a(log(r) — p— 2:8') — K) =

i€F i€Ey
— Gj[ Z exp(u}) + Z exp(uf’) +Hj< Z exp(u}) + Z exp(u?) +Hj< Z exp(u}) + Z exp(u?))ﬂ.
i€E, i€Es o i€Es i€Eq i€Es
£ij=0 £ij=0 &ij=1 &ij=1 £ij=2 £ij=2



Three epoch model outline
Let’s denote residual vectors for individual 7 in the following way
+i j ;
e =log(ry) —p—pY, j=1,2

el =log(r;) — p —w:fUTY, j=1,2.
( =log(t;) — p— 89, j=1,2,3.

Let’s define an artificial epoch point 7y := 0. We can find the corresponding survival function for individual 4:

Zexp —Zexp( (+) K)—exp( )—l—Zexp( -9 —K) Lo <t<r, (31)

The log-likelihood of the model is the following;:

3 3
log(p(D|©)) = dlog(a) — apd — Kd + (o — 1) Z Z d;ilog(t;) — Z Z diz; 8%

k=1icE} k=1 iGEk

+exp(— Z 3 [—jZ:eXp(Oégngj)) —exp( ) Zexp( =) )]7

k=1i€FE}

where d is the number of uncensored individuals. We assume the same priors as in , , and

while for *)’s we introduce the following conditional prior:

1 (2 3 2 ;
57,87 B 0&ker ) = b2y =17 =m o~ N (0, Bm) 5 =1, M (32)
where
Jélckl P120G10G2\/Cklcl2 P13UG10G3\/m
Ykim = | p12061062VCr1Ci2 0%5C12 p230G20G3V Ci2Crms (33)
p130610G3VCi1Cms  p23062063V CiaCns 02:5Cm3

Note that here we assume that Cjq, Cj2 and C,,3 are positive. Thus, given that the mixture components
Ci1, Ci2 and Ciy,3 are positive we find the conditional distributions based on equation (32)). Therefore, the

prior distributions for the effect sizes are

k
ﬁ(l |5 2) j Gk)i:l(VJ(' ))izl = (k,1,m)

N 061V Cr1(p13 — ,012[)23)55»3) N 061V Cr1(p12 — 013,023)552) o2.C {1 pla + Pz — 2p12p23p13]
~ w1 |1 —
063V Cms(1 — p33) 062V Cia(1 — p3s) “t 1 — p33

B2, 89 (020321 (VW) = (k,1,m)

N[ 7oV Ciz(pas — p12p13)5§- ) L 962V Cia(p12 — P13p23)5§1) o2 {1 P + P33 — 2p12p13p23}
~ 0|1 —
063V Cs(1 = pi;) 061V Cr1(1 = pi3) s 1—piy

BB B (02031 (Wi, = (ky1m)

1
063V Cms(p2s — prapi2)B; @ 5a 3V Cms3(p13 — P12023)5§ ) 5 P2 + P23 — 2p13p12023
~ N 0'G30m3 —

+
oc2vV/Ci2(1 = ply) 0c1VCr (1 = piy) 1—piy

73

74

76

7



However, it can happen that when we evaluate effect for one epoch, then the effect size in at least one of s
the other epochs has been set to 0. For this situation we will define the corresponding priors by using the
equations written above, but with the following agreement: if ﬁj(»k) =0 and *yj(.k) = 0, then just ignore all the s
terms which contain 5](.]“). 81

Note that the correlation coefficient in the bivariate normal distribution (BJ(-D, BJ(g))\ 53('2) is given by the

partial correlation p13.0 = %. So, to include in our model the fact that ﬁ](l) and 653) should be

conditionally independent given 53(2) we impose a constraint pi3 := p12p23. Hence, the previously mentioned

priors became

001v0k1p123](-2)

D152 43 2 13 (N8 _ (g N
B8, 59 (02,021, (Y = (ks tym) ( VG

2 9 9
o1 - P20 | 31 - p%2>>
23

k
BI85, 85 (024 )hmr (0 Nior = (k1 m)

v (76201 = 1) B} 762v/Tiapra(l — piy) 55"
063V Crm3(1 — p2ap3s) 061V Cri(1 = piap3s)

2 2 2 2
+ -2
70%:20& {1 _ P12 T Pa3 012/)23})

1- P%ng?,

oGV Cm3p235§-2)
oc2vCi2

3 1 2 k)\:
BB, B (02)ie (W)Eey = (b lym) ~ N ( s
12

2 2 9
,06:3Cms3 [1 - M’] = 083Cms(1 — P§3)>

We continue with the list of posteriors:

3 k—1 k—1
log p(u| D, e, (B*))3_,) = const + exp(—K) Z Z [ - Z exp (asgﬂ)) —exp (asgk)) i Z exp (QEE_J))]
k=1i€By - j=1 j=1
—apd — —.
an 202

3
log p(au, (B%))3_,) = const + az Z di[log(t;) — p — 2:8M] + (g + d — 1) log(a) — Koo
k=1i€E)

o) (- St (ot + S0

log p(BY"|D, 1, v, (B* )23, (02431, (V)icy = (ko 1,m)) = —aBY Y diay

i€E,
—l—exp(—K)(— Z eXp(agl(_l)) _ Z exp(a€§+1))) (34)
icEy i€EyUE3
B 1 (5(1) B 0617/ Crapr2By” ) ?
208, Cri(1 = piy) \ oa2vCi2 '



log p(B7 D, 1, a, (B*) )k 3, (084321, (W )ioy = (k,Lm)) = —aBP) Y diwyy

i€ Ey
+ exp(—K)( S ep(as V) = Y em(ae) = 3 e (a€§+2)))
i€ B UEs i€Ea i€E;
B 1 <ﬁ(2) B (UG2V0l2p23(1 - 0%2)/6](‘3) L 962V Ciapr2(1 — P%g)ﬂj('l)))Q
262..Co |1 — Pi2tp35—2p%, 03, ! 0G3V Cm?)(l - p%2p%3) 0G1V Ckl(l - P%Qﬂ%g) '
G2z 1=p72035
(35)
log p(BS” D, 1, a, (B*)) k2 3, (02431, (W )ioy = (k,Lm)) = —aBP) Y diwy
i€Es
(2) 2
(-2) (3) 1 3) 063V Cm3p2sp;
+ exp(—K < {exp(asi ) fexp(asi )}) — (6- — .
( ) iEZEg, 20%:307713(1 - p%?)) ! O—GQ\/@
(36)
> 1
log p(6,|D, i, v, (B*)3_,) = const — ozZ Z dizij0; — E(SQ
k=1i€E
+ exp(— ZZ [ Zexp( HJ)) exp( >—|—Zexp( j)ﬂ.
k=1i€E
(37)
561V Ch1 (2 140 UG3\/C'm3p235§2) 140
We define 77](6}) = P12 oc2VCiz 6 7 , 777(2[) = oG2VCi2 ’ a and
1=0 0, 1=0

)

0G2VCiz p12(1—p23) B(l) 0G2V/Ciz p23(1—p12)* 6(3) k,m # 0
cc1VCri1 1- 012,023 O'GBVCmS 1_p%2p§3 J 0 ’

0c2vVCia p12(1— P23) (1) _
77[(216) = 0c1VCr1 1=plyp3s 3 k 7é 0,m=0 .
m 02V Cia p23(1— 1)12) (5 .
063V Cms  1-p1,03, B; k=0,m#0
0, k=m=0
1

Or1 =

+1 1 1 1
\@\/1 + Oézdélckl(l - P%z) ( Zz’eEl x2 exp( () _ Oéiﬂijm(gl)) + ZieEQUEg x?j exp (UE ) - Oéfzﬂ?;(d))>

1 2 2 9,2 2
_ 2<1 +0202,Ca [1 _ Pi2tpas P12P23] . <_ Z xfj exp (uf — a:r”nl(z,gm)

6'122 1- p%Qp%?) i€Eo
-1 2 2
+ Z x?j exp(ug ) Qi km)) Z x; exp( (+2) _ a:vunl( k)m)>>
1€E2UE3 i€E3
1 2 2 2 2 -2 3 3 3
2= 2(1 +0°083Cma(1— ph3) - | = ZE: 2| exp (™ — awignly) ) = exp(u® — awin)) | )
1€lg



Ty = exp ( S en() - Y exp(ug+1>)), Dy = /202,01 - 720).

i€FE, i€E2UE3

M (5 2,
906 v2tr) = exp ( — a(6r1V2t, Dy + 771(;)) Z ditij — Z exp (Uz(-l) — owij (6k1V 2t Dy + 771(5)))

T . ;
i€cEq i€ Eq

— Z exp(uz(-ﬂ) — amij(ék\/it,.D + r],(c%))) + Z exp(ul(»l)) + Z exp(ugﬂ)) — (6k1\/§t,.)2>

1€E2UES i€k, 1€EUE3

fo—ew (30 ewn(ul ) - X e (u) - ¥ en(u ™)),

1€EUE3 1€ Fo i€FR3
2 2 2 2
Pia T P33 — 2p12p
D2 — 20%:20[2 (1 _ M2 23 5 212 23>.
1 — piapis

9(2) (612\/§t7‘)

. 2
T = exp ( — a(D2612V2t, + Ul(;k)m) Z d;xij

1€ Fo

+ Z |:eXp(ul(,_1) _ Oz.Tij(Dga'lQ\/itr + nl(;Qk)m)) — exp <u£_1)):|

1€EEUE3

_ Z [exp(ul@) — aiCij(.DQ&lQ\/itr + nl(;Qk)m)) —exp (%2))}

i€FE;

_ Z |:exp(u52) — oy (Dg&lg\/itr + 77l(,2k)m)) — exp (uEQ)):| _ (6’[2\/§tr)2)

i€E3

T5 = exp < Z I:exp(ul(_Q)) — exp(ui(ﬁ))}), Dy = \/QUé?)Cmg(l — p33).

i€FE3

B (63 2t
%‘m = exp |:— O[(Dg&mg\/itr + 77531)) Z dzl'”
3 i€Es
+ Z [exp (ugﬁ) — Oé.’Eij<D3a'm3\/§tr + nﬁil))) — exp (ugfz)) — exp (ul(-s) — aa:ij(Dgﬁmg\/itr + nsl)))
i€E3
+ exp (ug?’))} — ([77”3\/525,)2}
Derivation for the sparse calculations 8

= g1 atetiout - A Z(OF( 3 en(ul”)+ 3 en(ui*))

J i€E;UE; i€Ey
§i;=0 €i;=0
- - 0.5
+ M; <(1 — 5)2< Z exp(ugl)) + Z exp(ul(-ﬂ))) +(2- fj)2< Z exp(u§1)> + Z exp(ugﬂ)))))] .
i€E2UE; i€ B i€E,UEs i€ By
&ij=1 &ij=1 £ij=2 £ij=2

Expressions for ;5 and 4,,3 follow the same pattern - each time there is a sum over an individuals from a

certain epoch, we break it into three cases: §;; = 0, §; = 1 and &;; = 2, we group them together, remove the

10



term of the form aw;;n by adding the appropriate multiplicative terms in front. We rewrite parts of the
equation in the following way:

Z eXP(aagl) - K) + Z exp(agl(.ﬂ) — K) = GJ{ Z exp(ugl)) + Z exp(ugﬂ))

i€ Eq i€ E3UE;3 icEq i€ EUE—3
£ij=0 &i;=0
—l—Hj( Z exp(ugl)) + Z exp(ul(-ﬂ)) +Hj( Z exp(ul(-l)) + Z exp(ugﬂ))))].
i€ Fq i€ E3UE;s i€k i€EFEUE3
£ij=1 &ij=1 £ij=2 £ij=2

Equations and can be rewritten in an analogous way.
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Supplementary Figures

0.4+

Estimated correlation parameter

Windowlsize =5 Window Isize =10 Window Isize =50 Window slize =100

Figure 1. Effect of window size on the inter-epoch correlation. A total of p = 400 non-zero effects were
generated on top of M =40,249 markers from chromosome 22 using N =8000 randomly selected UK Biobank individuals in 10
independent simulations. The true correlation between epochs was simulated p = 0.5 and heritability h? = 0.5. The time-varying
BayesW models were estimated with mixture components 0.001,0.01 and by varying window size (the number of last iterations
used for estimating genetic correlation). Combining more iterations gives more accurate genetic value estimates yielding more
accurate genetic inter-epoch correlation estimates.

13



s
B corGowa) | corGon-end [ corGayna?

2
cor(@ow.a?) . cor(@uw-£p2.9%) . cor@pu-n0)

0.75+

0.50+

0.25+ i
0.00- ,

cor(BB B#—Oand[} =0 B OandB %0 : :_
Simulation setting

Correlation of genetic predictor and genetic value

Figure 2. Prediction accuracy when predicting . A total of p = 400 non-zero effects were generated on top
of M =40,249 markers from chromosome 22 using N =8000 randomly selected UK Biobank individuals in 10 independent
simulations. The assignment of markers between the group was random. The models were estimated using time-varying BayesW
model with mixture components 0.001,0.01. In all of the scenarios genetic variances were kept constant (corresponding to
heritability h=0.5) within groups A and B and epochs 1 and 2. The inter-epoch correlation was also kept constant in group
A but in group B we simulated intra-epoch correlations of 0, 1, -1 and 0.5. Although the groups are random and therefore
the markers between groups correlated we manage to recover the group-specific genetic variances and slightly (absolutely)
underestimated correlation parameters. The bounds of the box show the interquartile range, centre shows the median and
minimum and maximum indicate the 95% credibility interval.
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Figure 3. Recovering genetic variance and correlation hyperparameters in case of two groups
with constant genetic variances and differing inter-epoch correlations. A total of p = 400 non-zero
effects were generated on top of M =40,249 markers from chromosome 22 using N =8000 randomly selected UK Biobank
individuals in 10 independent simulations. The assignment of markers between the group was random. The models were
estimated using time-varying BayesW model with mixture components 0.001,0.01. In all of the scenarios genetic variances were
kept constant (corresponding to heritability A=0.5) within groups A and B and epochs 1 and 2. The inter-epoch correlation was
also kept constant in group A but in group B we simulated intra-epoch correlations of 0, 1, -1 and 0.5. Although the groups are
random and therefore the markers between groups correlated we manage to recover the group-specific genetic variances and
slightly (absolutely) underestimated correlation parameters. The bounds of the box show the interquartile range, centre shows
the median and minimum and maximum indicate the 95% credibility interval.
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Figure 4. Recovering genetic variance and correlation hyperparameters in case of two groups
in two scenarios. A total of p = 400 non-zero effects were generated on top of M =40,249 markers from chromosome 22
using N =8000 randomly selected UK Biobank individuals in 10 independent simulations. The assignment of markers between
the group was random. The models were estimated using time-varying BayesW model with mixture components 0.001,0.01. In
the first scenario, the markers in group A were assigned genetic variance of D.SJé in the first epoch and no genetic variance in
the second epoch; in group B markers were assigned genetic variance of 0.7:7%v in both epochs with a correlation of 0.5 between
the epochs. In the second scenario, the markers in group A and group B were assigned in both epochs genetic variances of
0.30% and 0.70% respectively with correlations of 0.5 between the epochs. The genetic variance aé was chosen such to represent
h? = 0.5. The group-specific genetic variance parameters are captured within the 95% credibility interval but due to imperfect
effect estimation, the genetic correlation parameter is slightly underestimated and this effect is stronger in the case of lower
genetic variance. The bounds of the box show the interquartile range, centre shows the median and minimum and maximum
indicate the 95% credibility interval.
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Supplementary Information
Supplementary Note

Generating the phenotypes with different effect sizes

In order to generate data that has an underlying survival function given in equation [4] we use the idea of
inverse transform sampling. Based on the specification of survival function in equation [ it is possible to find
the cumulative distribution function and its respective inverse which we then use for sampling. The rule can

be summarised as:

Algorithm 1: Generating data from distribution with changing effect sizes.

Data: Intercept j, shape «, effect size vectors B!, 52, marker values z; for each individual, cut-off
point between epochs 7, K is the Euler-Mascheroni constant.
1 foreach individual i do
2 Generate u; ~ U(0,1)
3 if u; > 1 — exp[—exp(a(log(r) — p — z;8') — K)| then
4 Generate t; as:
5 log(t;) = p+2:f° + & + 2 log[—exp(a(log(r) — p —z:") — K) +
exp(a(log(r) — p — x;8%) — K) — log(1 — u;)]

Ise

Generate t; as

| log(t;) = p+ zif' + & + Llog[—log(1 — u)]

o
[¢]

Moment generating function

Let us rewrite probability density function as

Aot tem Mt O<t<T
ft) =

)\Qata—leTQ(z\z—Al)—AztD" t 2 T
where A, = e~#~@if"~K [ 1 2. Then the probability density function of Y = log T is

A aev(@tt) =A™ y < log(r)

g(y) - Azaey(a—‘rt)—q—a(Az—Al)—)\Qey‘*, Y > log(T)

Then,

—t t =t a t t
m(t) = E[ety] =AY (O[—’_7>\17’0‘> + A e’ (A2—A1) (F (w> — (a + ,)\QTQ)>
@ «

(67

%7(3, x) = log(z)'(s,z) + 2T(3,s,x) ...

BA

aB—1_—(At)? t
(o) (\t) e ,t>0

ft) =
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We fit a Cox proportional-hazards model [?] to describe how CBC levels and obstetric complications

influence birth rate at a particular point in time. The model is expressed as follow:
hi(t) = ho(t)eap(Br - x} + B% - a? + ...+ By - ab) (38)

where ¢ represents the pregnancy time, h;(t) is the hazard function for individual ¢ which can be interpreted
as the risk of labour at time t. The regression coefficients 31, 82, ..., B, measure the effect size of covariates.
ho(t) is the baseline hazard function describing how the risk of birth changes over time at baseline covariate

levels.
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