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Agenda

1. Overview of GWAS

2. What AMP framework brings to the table? How can one make AMP scalable and
stable for the GWAS inference task?

3. How does it compare to the existing state-of-the-art methods? What is the
extent of applicability of gVAMP?
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Modelling genetic effects on a trait

Bayesian Linear Regression for the individual-level model:

𝑦𝑖 = ⟨x𝑖, 𝛽⟩ + 𝜖𝑖 for 𝑖 ∈ [𝑁] = {1, … , 𝑁} and

𝛽𝑗 ∼ (1 − 𝜆) ⋅ 𝛿0(⋅) + 𝜆 ⋅
𝐿

∑
𝑙=1

𝜋𝑙 ⋅N (⋅, 0, 𝜎2
𝑙 ), 𝜖𝑖 ∼ N (0, 𝛾𝜖

−1)

Data format (genotype matrices normalized column-wise):

𝑔(𝑖)
𝑗 =

⎧{
⎨{⎩

2, 𝑎𝑎
1, 𝐴𝑎
0, 𝐴𝐴

⟹ {0, 1, 2}𝑁×𝑃 ∋ X =
⎡
⎢⎢
⎣

1 2 … 0
0 0 … 1
⋮ ⋮ ⋱ ⋮
0 2 … 2

⎤
⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

∼ 106

⎫}}
⎬}}⎭

∼ 105
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2. (Vector) Approximate Message Passing

iterative algorithms that incorporate structural information about genetic effects
linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]
statistical physics conjecture: AMP is optimal among polynomial-time
algorithms
if X right-orthogonally invariant [RSF16, T17]: under: distributions of objects in
the limit precisely characterized by a deterministic recursion called state evolution

Denosing step LMMSE step

learns and incorporates
knowledge of effects
distribution 𝑝(𝛽)

takes into account corre-
lation structure between
genetic markers
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genomicVAMP

1. Filtering the normalized genotype
matrix for first-degree relative to
reduce the correlation between rows
(∼ 400, 000 out of 460, 000
participants from the UK Biobank
study)

2. Auto-tuning of 𝛾1,𝑡 [FSR+17]
combined with EM steps [VS12, FS17]
that updates 𝑝𝑡(𝛽)

3. Damping of denoised marker effects
(momentum)

4. Warm-start of conjugate gradients for
LMMSE calculation [SD20]

5. Re-using Hutchinson estimator
6. MPI + OpenMP
7. data streaming by using a lookup

table + SIMD:

( 0 1 0 0 1 1 1 0 )
↧

( NaN 2 0 1 )
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3. Simulations: Association testing & prediction

Light-speed whole genome association testing and prediction via Approximate Message Passing 7 / 12



3. Simulations: Association testing & prediction
gVAMP

887,060

gVAMP

2,174,071

gVAMP

8,430,446

REGENIE

887,060

GMRM

2,174,071

TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR
0.0

0.1

0.2

0.3

0.4

a

0.30

0.31

0.32

0.33

0.34

0.35

gVAMP 
 8,430,446

gVAMP 
 2,174,071

GMRM 
 2,174,071

pr
ed

ic
tio

n 
ac

cu
ra

cy

b

887,060 2,174,071 8,430,446

gV
A

M
P

R
E

G
E

N
IE

G
M

R
M

gV
A

M
P

R
E

G
E

N
IE

G
M

R
M

gV
A

M
P

R
E

G
E

N
IE

G
M

R
M

10

30

100

ho
ur

s

c

gVAMP

REGENIE

GMRM

Light-speed whole genome association testing and prediction via Approximate Message Passing 7 / 12



Fine mapping: gVAMP vs GMRM
gVAMP
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Prediction accuracy

SBP: Systolic blood pressure
RBC: Red blood cell count
MCV: Mean corpuscular volume
MCH: Mean corpuscular
haemoglobin
HT: Standing height
HDL: High density lipoprotein
HbA1c: Glycated haemoglobin
FVC: Forced vital capacity
EOSI: Eosinophill count
DBP: Diastolic blood pressure
CHOL: Cholesterol
BMI: Body mass index
BMD: Heel bone mineral density
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Autosomal imputed data + X + WES analysis

60 genes where rare coding mutations significantly influence phenotype, and 76
associations localised to the single-locus level on chromosome 𝑋 across five traits
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Autosomal imputed data + X + WES analysis

Genes Trait Replicated
CALCR, CEP350, HSPA9, MCH yes(Open Targets)

MOXD1 and SLC26A8
EFNA3, GRK5 and SCG2 BMD EFNA3 - angiogenesis,

GRK5 - linked to bone formation,…
COL4A4 and TFRC RBC recently discovered in large-scale meta-analysis

SHOX, TRIM68, TRAPPC2,… HT 45/50 WES replicated

21, 3, 41, 7, and 4 X chromosome associations that are conditional on everything
else for BMD, HDL, MCH, RBC and HT
novel associations: BMD:20/21, HDL:3/3, MCH:40/41, RBC:5/7 and HT:0/4

Light-speed whole genome association testing and prediction via Approximate Message Passing 10 / 12



Summary & Future Directions

gVAMP requires less than a day to
model 8.4 million imputed genetic
variants jointly in over 400, 000 UK
Biobank participants. Other methods
such as regenie, GMRM can not do
this
exhibits lower FPR, greater TPR
and is more consistent than regenie
method
capable of analysing and doing
fine-mapping for WES and X
chromosome data jointly with imputed
data (hundreds of associations)

1. summary statistics & meta analysis
models

2. time-to-event models
3. using gVAMP on WGS data
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gVAMP git repo: https://github.com/medical-genomics-group/gVAMP

The End

Thanks for your
attention!
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REGENIE overview
Step 1: (Inference)
● (Ridge regression): reads 𝑃 markers in blocks of 𝐵 = 1000 consecutive markers and

X =
⎛⎜⎜⎜
⎝

𝐵 𝐵 … 𝐵
0 4.242 … −1.414

−1.414 −1.414 … 0
⋮ ⋮ ⋱ ⋮

−1.414 4.242 … 1.414

⎞⎟⎟⎟
⎠

for 𝜏 ∈ {𝜏1, … , 𝜏𝐽} and block index 𝑏 calculate ̂𝛽𝜏,𝑏 = (X𝑇
𝑏 X𝑏 + 𝜏𝐼)−1X𝑇

𝑏 𝑦
● (Cross-validation): fitting model 𝑦 = 𝑊𝛼 + 𝜀 using ridge with cross-validation,

where 𝑊 contains 𝐽𝑀/𝐵 predictors stacked
Step 2: Single-variant association testing using Leave-One-Chromosome-Out
(LOCO) approach
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Leave-One-Out (LOO) testing approach

using VAMP we obtain estimators ̂𝛽 for the effect sizes in a linear model

𝑦 = X𝛽 + 𝜖, 𝜖 ∼ N (0, 𝜎2
𝜖 𝐼𝑁).

Leave-One-Out (LOO) p-values for the statistical test 𝐻0 ∶ 𝛽𝑖 = 0 are calculated
as a p-value from t-test for testing whether the slope of a regression line is zero
when regressing

𝑦(𝑖) ∶= 𝑦 − X\𝑖 ̂𝛽\𝑖 on X𝑖

(X\𝑖 = all columns of X except the i-th one)
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Parallelization of the code

X =
⎛⎜⎜⎜⎜
⎝

0 4.242 … −1.414
−1.414 −1.414 … 0

⋮ ⋮ ⋱ ⋮
−1.414 4.242 … 1.414

⎞⎟⎟⎟⎟
⎠

each MPI worker sees approximately
equal number of consecutive columns
(X is stored in a column-major
format)
𝑣 ↦ X𝑇 𝑣 operation is brought down
to the level of single markers and
combined with OpenMP reduction

𝑢 ↦ X𝑢 = ∑𝑊
𝑤=1 X𝑤𝑢𝑤 →

2 ⋅ (𝑊 − 1) ⋅ 𝑁 doubles sent for
communication
X is being streamed-in using a lookup
table (no additional memory is
required, performing 4 basic
operations at once):
( 0 1 0 0 1 1 1 0 ) ↦
( NaN 2 0 1 )
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