Light-speed whole genome association testing and prediction via Approximate Message Passing

Al Depope† , Marco Mondelli† , Matthew R. Robinson†

† Institute of Science and Technology Austria, Klosterneuburg, Austria.

Agenda

Agenda

1. Overview of GWAS

2. What AMP framework brings to the table? How can one make AMP scalable and stable for the GWAS inference task?

Agenda

1. Overview of GWAS

- 2. What AMP framework brings to the table? How can one make AMP scalable and stable for the GWAS inference task?
-
- 3. How does it compare to the existing state-of-the-art methods? What is the extent of applicability of gVAMP?

1. **Genome-Wide Association Studies**

Step 1: Genome-wide association studies in adult populations from the UK Biobank

Step 2: Whole genome polygenic risk scores

Bayesian Linear Regression for the **individual-level** model:

$$
y_i = \langle \mathbf{x}_i, \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \dots, N\}
$$

Bayesian Linear Regression for the **individual-level** model:

$$
y_i = \langle \mathbf{x}_i, \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \ldots, N\} \quad \text{ and } \quad
$$

$$
\beta_j \sim (1-\lambda) \cdot \delta_0(\cdot) + \lambda \cdot \sum_{l=1}^L \pi_l \cdot \mathcal{N}(\cdot, 0, \sigma_l^2), \quad \epsilon_i \sim \mathcal{N}(0, \gamma_{\epsilon}^{-1})
$$

Bayesian Linear Regression for the **individual-level** model:

$$
y_i = \langle \mathbf{x}_i, \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \ldots, N\} \quad \text{ and } \quad
$$

$$
\beta_j \sim (1-\lambda) \cdot \delta_0(\cdot) + \lambda \cdot \sum_{l=1}^L \pi_l \cdot \mathcal{N}(\cdot, 0, \sigma_l^2), \quad \epsilon_i \sim \mathcal{N}(0, \gamma_{\epsilon}^{-1})
$$

Data format (genotype matrices normalized column-wise):

$$
g_j^{(i)} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases}
$$

Bayesian Linear Regression for the **individual-level** model:

$$
y_i = \langle \mathbf{x}_i, \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \ldots, N\} \quad \text{ and } \quad
$$

$$
\beta_j \sim (1-\lambda) \cdot \delta_0(\cdot) + \lambda \cdot \sum_{l=1}^L \pi_l \cdot \mathcal{N}(\cdot, 0, \sigma_l^2), \quad \epsilon_i \sim \mathcal{N}(0, \gamma_{\epsilon}^{-1})
$$

Data format (genotype matrices normalized column-wise):

$$
g_j^{(i)} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases} \implies \{0, 1, 2\}^{N \times P} \ni \mathbf{X} = \underbrace{\begin{bmatrix} 1 & 2 & \dots & 0 \\ 0 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 2 & \dots & 2 \end{bmatrix}}_{\sim 10^6} \sim 10^5
$$

In iterative algorithms that incorporate structural information about genetic effects

- iterative algorithms that incorporate structural information about genetic effects
- linear models [Kab03, BM12, BM11, DMM09, KMS $+12$], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation

- iterative algorithms that incorporate structural information about genetic effects
- linear models [Kab03, BM12, BM11, DMM09, KMS $+12$], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
- **achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]**

- iterative algorithms that incorporate structural information about genetic effects
- linear models [Kab03, BM12, BM11, DMM09, KMS $+12$], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
- **achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]**
- **statistical physics conjecture: AMP is optimal among polynomial-time algorithms**

- iterative algorithms that incorporate structural information about genetic effects
- linear models [Kab03, BM12, BM11, DMM09, KMS $+12$], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
- **achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]**
- **statistical physics conjecture: AMP is optimal among polynomial-time algorithms**
- **I** if **X** right-orthogonally invariant [RSF16, T17]: under: distributions of objects in the limit precisely characterized by a deterministic recursion called *state evolution*

- iterative algorithms that incorporate structural information about genetic effects
- linear models [Kab03, BM12, BM11, DMM09, KMS $+12$], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
- **achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]**
- **statistical physics conjecture: AMP is optimal among polynomial-time algorithms**
- **I** if **X** right-orthogonally invariant [RSF16, T17]: under: distributions of objects in the limit precisely characterized by a deterministic recursion called *state evolution*

[Light-speed whole genome association testing and prediction via Approximate Message Passing](#page-0-0) 5 / 12

 \blacksquare

1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows (∼ 400, 000 out of 460, 000 participants from the UK Biobank study)

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400, 000$ out of $460, 000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400, 000$ out of $460, 000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$
- 3. Damping of denoised marker effects (momentum)

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400,000$ out of $460,000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$
- 3. Damping of denoised marker effects (momentum)

4. Warm-start of conjugate gradients for LMMSE calculation [SD20]

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400,000$ out of $460,000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$
- 3. Damping of denoised marker effects (momentum)
- 4. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 5. Re-using Hutchinson estimator

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400,000$ out of $460,000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$
- 3. Damping of denoised marker effects (momentum)
- 4. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 5. Re-using Hutchinson estimator
- 6. MPI $+$ OpenMP

- 1. *Filtering* the normalized genotype matrix for first-degree relative to reduce the correlation between rows $(∼ 400,000$ out of $460,000$ participants from the UK Biobank study)
- 2. *Auto-tuning* of $\gamma_{1,t}$ [FSR+17] combined with EM steps [VS12, FS17] that updates $p_t(\beta)$
- 3. Damping of denoised marker effects (momentum)
- 4. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 5. Re-using Hutchinson estimator
- 6. MPI $+$ OpenMP
- 7. data streaming by using a lookup $table + SIMD⁺$

3. **Simulations: Association testing & prediction**

[Light-speed whole genome association testing and prediction via Approximate Message Passing](#page-0-0) 7 / 12

Fine mapping: gVAMP vs GMRM

Prediction accuracy

SBP: Systolic blood pressure RBC: Red blood cell count MCV: Mean corpuscular volume MCH: Mean corpuscular haemoglobin HT: Standing height HDL: High density lipoprotein HbA1c: Glycated haemoglobin FVC: Forced vital capacity EOSI: Eosinophill count DBP: Diastolic blood pressure CHOL: Cholesterol BMI: Body mass index BMD: Heel bone mineral density

Autosomal imputed data + X + WES analysis

Autosomal imputed data + X + WES analysis

 \Box 60 genes where rare coding mutations significantly influence phenotype, and 76 associations localised to the single-locus level on chromosome X across five traits

Autosomal imputed data + X + WES analysis

- \blacksquare 21, 3, 41, 7, and 4 X chromosome associations that are conditional on everything else for BMD, HDL, MCH, RBC and HT
- novel associations: BMD:20/21, HDL:3/3, MCH:40/41, RBC:5/7 and HT:0/4

[Light-speed whole genome association testing and prediction via Approximate Message Passing](#page-0-0) 11 / 12 12

gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this

- gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits **lower FPR**, **greater TPR** and is **more consistent** than regenie method

- gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits **lower FPR**, **greater TPR** and is **more consistent** than regenie method
- same capable of analysing and doing **fine-mapping** for WES and X chromosome data jointly with imputed data (hundreds of associations)

- gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits **lower FPR**, **greater TPR** and is **more consistent** than regenie method
- same capable of analysing and doing **fine-mapping** for WES and X chromosome data jointly with imputed data (hundreds of associations)

1. summary statistics & meta analysis models

- gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits **lower FPR**, **greater TPR** and is **more consistent** than regenie method
- same capable of analysing and doing **fine-mapping** for WES and X chromosome data jointly with imputed data (hundreds of associations)
- 1. summary statistics & meta analysis models
- 2. time-to-event models

- gVAMP requires **less than a day** to model 8.4 **million** imputed genetic variants **jointly** in over 400, 000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits **lower FPR**, **greater TPR** and is **more consistent** than regenie method
- same capable of analysing and doing **fine-mapping** for WES and X chromosome data jointly with imputed data (hundreds of associations)
- 1. summary statistics & meta analysis models
- 2. time-to-event models
- 3. using gVAMP on WGS data

gVAMP git repo: <https://github.com/medical-genomics-group/gVAMP>

gVAMP git repo: <https://github.com/medical-genomics-group/gVAMP>

The End

Thanks for your attention!

Extra Slides

REGENIE overview

- Step 1: (Inference)
	- (Ridge regression): reads P markers in blocks of $B = 1000$ consecutive markers and

$$
\mathbf{X} = \begin{pmatrix} B & B & \dots & B \\ 0 & 4.242 & \dots & -1.414 \\ -1.414 & -1.414 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1.414 & 4.242 & \dots & 1.414 \end{pmatrix}
$$

for $\tau\in\{\tau_1,\ldots,\tau_J\}$ and block index b calculate $\hat{\beta}_{\tau,b}=(\mathbf{X}_b^T\mathbf{X}_b+\tau I)^{-1}\mathbf{X}_b^T y$

- (Cross-validation): fitting model $y = W\alpha + \varepsilon$ using ridge with cross-validation, where W contains JM/B predictors stacked
- **Step 2: Single-variant association testing using Leave-One-Chromosome-Out** (LOCO) approach

Leave-One-Out (LOO) testing approach

u using VAMP we obtain estimators $\hat{\beta}$ for the effect sizes in a linear model

$$
y = \mathbf{X}\beta + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2 I_N).
$$

Leave-One-Out (LOO) p-values for the statistical test $H_0: \beta_i = 0$ are calculated as a p-value from t-test for testing whether the slope of a regression line is zero when regressing

$$
y^{(i)} := y - \mathbf{X}_{\backslash i} \hat{\beta}_{\backslash i} \quad \text{ on } \quad \mathbf{X}_i
$$

 $(X_{\backslash i} = \text{all columns of } X \text{ except the i-th one})$

Parallelization of the code

$$
\mathbf{X} = \left(\begin{array}{ccccc} 0 & 4.242 & \dots & -1.414 \\ -1.414 & -1.414 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1.414 & 4.242 & \dots & 1.414 \end{array} \right)
$$

- \blacksquare each MPI worker sees approximately equal number of consecutive columns (**X** is stored in a column-major format)
- $\mathbf{v} \mapsto \mathbf{X}^T v$ operation is brought down to the level of single markers and combined with OpenMP reduction
- $u \mapsto \mathbf{X}u = \sum_{w=1}^{W} \mathbf{X}_w u_w \rightarrow$ $2 \cdot (W - 1) \cdot N$ doubles sent for communication
- X is being streamed-in using a lookup table (no additional memory is required, performing 4 basic operations at once): $(0 \t0)1 \t1)1$ $((NaN \mid 2 \mid 0 \mid 1))$