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Agenda

G Overview of GWAS

e What AMP framework brings to the table? How can one make AMP scalable and
stable for the GWAS inference task?

e How does it compare to the existing state-of-the-art methods? What is the
extent of applicability of gVAMP?
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c Genome-Wide Association Studies

Step 1: Genome-wide association studies in adult populations from the UK Biobank
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Modelling genetic effects on a trait
m Bayesian Linear Regression for the individual-level model:

y, = (x;,5) +¢ fori € [N]={1,...,N}
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m iterative algorithms that incorporate structural information about genetic effects

m linear models [Kab03, BM12, BM11, DMMO09, KMS+12], generalized linear
models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation

m achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]

m statistical physics conjecture: AMP is optimal among polynomial-time
algorithms

m if X right-orthogonally invariant [RSF16, T17]: under: distributions of objects in
the limit precisely characterized by a deterministic recursion called state evolution

[ Denosing step g LMMSE step }

learns and incorporates takes into account corre-
knowledge of effects lation structure between
distribution p(/3) genetic markers
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genomicVAMP

1. Filtering the normalized genotype
matrix for first-degree relative to
reduce the correlation between rows
(~ 400, 000 out of 460,000
participants from the UK Biobank
study)
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genomicVAMP

1. Filtering the normalized genotype
matrix for first-degree relative to
reduce the correlation between rows
(~ 400, 000 out of 460,000
participants from the UK Biobank
study)

2. Auto-tuning of vy, , [FSR+17]
combined with EM steps [VS12, FS17]
that updates p, ()

3. Damping of denoised marker effects
(momentum)

. Warm-start of conjugate gradients for

LMMSE calculation [SD20]

. Re-using Hutchinson estimator
6. MPI + OpenMP

7. data streaming by using a lookup

table + SIMD:

(0 170 0J1 1J1 0))
!
(EDE0D)
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e Simulations: Association testing & prediction
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Fine mapping: gVAMP vs GMRM
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Prediction accuracy

SBP: Systolic blood pressure SBP-

RBC: Red blood cell count RBC-

MCV: Mean corpuscular volume MCv-
MCH: Mean corpuscular MCH-
haemoglobin HT-
HT: Standing height g HpL- model
HDL: High density lipoprotein g Hoate SVAMD v
HbAlc: Glycated haemoglobin 5 Fve- gg"a'ig"sR
FVC: Forced vital capacity EOSI- LDPred2
EOSI: Eosinophill count DBP-
DBP: Diastolic blood pressure CHOL-
CHOL: Cholesterol BMI-
BMI: Body mass index BMD-
0.0 0.2 0.4 056

BMD: Heel bone mineral density

polygenic score prediction accuracy
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Autosomal imputed data + X + WES analysis

m 60 genes where rare coding mutations significantly influence phenotype, and 76
associations localised to the single-locus level on chromosome X across five traits
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Autosomal imputed data + X + WES analysis

H Genes ‘ Trait ‘ Replicated H
CALCR, CEP350, HSPA9, MCH yes(Open Targets)
MOXD1 and SLC26A8
EFNA3, GRK5 and SCG2 BMD EFNA3 - angiogenesis,
GRKS5 - linked to bone formation, ...
COL4A4 and TFRC RBC | recently discovered in large-scale meta-analysis
SHOX, TRIM68, TRAPPC2,.. | HT 45/50 WES replicated

m 21,3,41,7, and 4 X chromosome associations that are conditional on everything
else for BMD, HDL, MCH, RBC and HT

m novel associations: BMD:20/21, HDL:3/3, MCH:40/41, RBC:5/7 and HT:0/4
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1. summary statistics & meta analysis
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2. time-to-event models
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Summary & Future Directions

m gVAMP requires less than a day to
model 8.4 million imputed genetic
variants jointly in over 400,000 UK
Biobank participants. Other methods
such as regenie, GMRM can not do
this

m exhibits lower FPR, greater TPR

and is more consistent than regenie
method 3. using gVAMP on WGS data

1. summary statistics & meta analysis
models

2. time-to-event models

m capable of analysing and doing
fine-mapping for WES and X
chromosome data jointly with imputed
data (hundreds of associations)
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gVA M P git FepPo: nttps://github.com/medical-genomics-group/gVAMP

al-genomics-group / VAMP.

Ol 1 rulresves
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gVA M P git FepPo: nttps://github.com/medical-genomics-group/gVAMP

The End

Thanks for your
attention!
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REGENIE overview

m Step 1: (Inference)
* (Ridge regression): reads P markers in blocks of B = 1000 consecutive markers and

B B B
0 4.242 ... —1.414
—1.414 —-1.414 ..
X = 5 2 .. 0
—1.414 4242 ... 1414

for 7 € {ry,...,7;} and block index b calculate ﬁ;,b = (XX, + 7)1 Xly
® (Cross-validation): fitting model y = Wa + ¢ using ridge with cross-validation,
where W contains JM /B predictors stacked

m Step 2: Single-variant association testing using Leave-One-Chromosome-Out
(LOCO) approach
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Leave-One-Out (LOO) testing approach

m using VAMP we obtain estimators B for the effect sizes in a linear model
y=XpB+e, €e~N(0,02Iy).

m Leave-One-Out (LOO) p-values for the statistical test H,, : 5; = 0 are calculated
as a p-value from t-test for testing whether the slope of a regression line is zero
when regressing

Yyl o=y — X\iﬁ\i on X,

1

(X,; = all columns of X except the i-th one)
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Parallelization of the code

0 4242 .. —1414
1414 —1414 .. 0
X = . . . . luHXuzzy: XUy —
1414 4242 .. 1414 2-(W —1)- N doubles sent for

communication

m X is being streamed-in using a lookup
table (no additional memory is
required, performing 4 basic
operations at once)

0 1]0 01 1 10
m v — XTv operation is brought down ([ I I I j>

to the level of single markers and ()

combined with OpenMP reduction

m each MPI worker sees approximately
equal number of consecutive columns
(X is stored in a column-major
format)
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