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Abstract

Human height is a model for the genetic analysis of complex traits, and recent studies
suggest the presence of thousands of common genetic variant associations and hundreds of
low-frequency/rare variants. However, it has not yet been possible to fine-map the genetic
basis of height, since all variant effects have not been modelled jointly leaving correlations
unaccounted for. To address this issue, we develop a new algorithmic paradigm based
on approximate message passing, gVAMP, to directly fine-map whole-genome sequence
(WGS) variants and gene burden scores, conditional on all other measured DNA variation
genome-wide. We find that the genetic architecture of height inferred from WGS data
differs from that inferred from imputed single nucleotide polymorphism (SNP) variants:
common variant associations from imputed SNP data are allocated to WGS variants of
lower frequency, and there is a stronger relationship of effect size and variant frequency.
Thus, even fine-mapped imputed variants are systematically mis-assigned and without the
joint analysis of WGS data it remains premature, if not unfounded, to make statements
regarding the number of independent associations and their properties. We validate gVAMP
on various datasets across UK Biobank traits where it outperforms widely used methods
for polygenic risk score prediction and association testing, offering a scalable foundation
towards analyzing hundreds of millions of variables measured on millions of people.

Keywords: whole genome regression; joint association testing; fine-mapping; polygenic
risk scores; approximate message passing
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Introduction 1

Efficient utilization of large-scale biobank data is crucial for inferring the genetic basis of disease 2

and predicting health outcomes from DNA. The common statistical approach of single-marker or 3

single-gene burden score regression [1–4], gives marginal associations that do not account for linkage 4

disequilibrium (LD), and in whole genome sequence (WGS) data, even weak associations that are 5

physically distant from causal variants will be discovered as significant at scale. While fine-mapping 6

aims to identify causal variants, current methods focus only on genome-wide significant loci within 7

one region at a time [5], in isolation from the rest of the genome, resulting in miscalibration and a 8

compromise of power. Thus, we currently lack accurate statistical models to jointly estimate the 9

effect of each locus, conditional on all other genetic variants. Applying whole genome regression 10

(WGR), where the effect of each variant is estimated conditional on all others, has the potential to 11

resolve these issues and reveal the underlying genetic architecture of complex traits. 12

Here, we focus on the highly heritable polygenic phenotype of human height, and develop a 13

new framework, gVAMP, which fits tens of millions of WGS variants jointly at scale. Applying 14

gVAMP to WGS data on hundreds of thousands of UK Biobank participants, we find a stronger 15

relationship of effect size and variant frequency, due to common variant associations in imputed 16

SNP data being allocated to WGS variants of lower frequency. These insights could not be obtained 17

from existing statistical approaches, and we additionally validate gVAMP on a number of datasets 18

by benchmarking against the state of the art: gVAMP outperforms widely used summary statistic 19

methods such as LDpred2 [6] and SBayesR [7] for polygenic risk score prediction, and an individual- 20

level REGENIE [1] method for association testing. Additionally, we show that its performance 21

matches that of MCMC sampling schemes [8] but with a dramatic speed-up in time (analysing 8.4M 22

SNPs jointly in under day as opposed to weeks). This lays the foundations for a wider range of 23

analyses in large WGS datasets that are entirely infeasible for other methods. 24

Results 25

Overview of the approach 26

Our focus is on the simple idea of joint association testing controlling for local and long-range 27

LD: we estimate the significance of each variant, conditional on all other observed DNA locations 28

genome-wide. To do this, we consider a general form of whole-genome Bayesian linear regression, 29

common to genome-wide association studies (GWAS) [7,8], estimating the effects vector β ∈ RP 30

from a vector of phenotype measurements y = (y1, . . . , yN ) ∈ RN given by 31

yi = ⟨xi, β⟩ + ϵi, for i ∈ {1, . . . , N}. (1)

Here, xi is the row of the normalized genotype matrix X corresponding to the i-th individual, 32

⟨xi, β⟩ = xT
i β denotes the inner product, and ϵ = (ϵ1, . . . , ϵN ) is an unknown noise vector with 33

multivariate normal distribution N (0, γ−1
ϵ · I) and unknown noise precision γ−1

ϵ . To allow for a 34

range of genetic effects, we select the prior on β to be of an adaptive spike-and-slab form: 35
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βi ∼ (1 − λ) · δ0(·) + λ ·
L∑

i=1
πi · N (·, 0, σ2

i ), for i ∈ {1, . . . , P}. (2)

Here, λ ∈ [0, 1] is the DNA variant inclusion rate, L is the unknown number of Gaussian mixtures, 36

(πi)L
i=1 denote the mixture probabilities and (σ2

i )L
i=1 the variances for the slab component. 37

Current association testing [1–4], fine-mapping [5] and polygenic risk score methods [8, 9] are 38

all based on forms of Equations (1) and (2), with parameters estimated by restricted maximum 39

likelihood (REML), Markov Chain Monte Carlo (MCMC), expectation maximisation (EM), or 40

variational inference (VI). REML and MCMC are computationally intensive and slow; while EM and 41

VI are faster, they trade speed for accuracy with few theoretical guarantees. Furthermore, current 42

software implementations of these algorithms limit either the number of markers or individuals. 43

Mixed linear model association (MLMA) approaches are restricted to using less than one million 44

SNPs to control for the polygenic background [1,2], resulting in a loss of power [8] and the potential 45

for inadequate control for fine-scale confounding factors [10]. Polygenic risk score algorithms are 46

limited to a few million SNPs, and lose power by modelling only blocks of genetic markers [6, 7]. 47

Likewise, fine-mapping methods are generally limited to focal segments of the DNA [5], and they 48

are unable to fit all genome-wide DNA variants together. Thus, no existing approach can apply 49

the statistical model of Equations (1) and (2) to jointly estimate the effects vector β and the 50

genome-wide significance of each element in WGS data. 51

We overcome this issue by developing a new approach for GWAS inference, dubbed genomic 52

Vector Approximate Message Passing (gVAMP). Approximate Message Passing (AMP) [11–13] refers 53

to a family of iterative algorithms with several attractive properties: (i) AMP allows the usage of a 54

wide range of Bayesian priors; (ii) the AMP performance for high-dimensional data can be precisely 55

characterized by a simple recursion called state evolution [14]; (iii) using state evolution, joint 56

association test statistics can be obtained [15]; and (iv) AMP achieves Bayes-optimal performance 57

in several settings [15–17]. However, we find that existing AMP algorithms proposed for various 58

applications [18–21] cannot be transferred to biobank analyses as: (i) they are entirely infeasible at 59

scale, requiring expensive singular value decompositions; and (ii) they give diverging estimates of 60

the signal in either simulated genomic data or the UK Biobank data. To address the problem, we 61

combine a number of principled approaches to produce an Expectation Propagation method tailored 62

to whole genome regression as described in the Methods (Algorithm 1). gVAMP approximates 63

the posterior E[β | X, y], providing joint effect size estimates and statistical testing via state 64

evolution (see “gVAMP SE association testing” in the Methods). Additionally, we learn all unknown 65

parameters in an adaptive Bayes expectation-maximisation (EM) framework [22,23], which avoids 66

expensive cross-validation and yields biologically informative inference of the phenotypic variance 67

attributable to the genomic data (SNP heritability, h2
SNP ) allowing for the first full characterisation 68

of the genetic architecture of human complex traits in WGS data. 69
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Figure 1. Joint association plot of 8.4 million imputed SNPs and 17 million WGS for
human height in 415,000 UK Biobank participants. AMP theory provides a joint association
testing framework, capable of estimating the effects of each genomic position conditional on all other SNP
markers. In the panel “Imputed SNPs”, we combine 8,430,446 autosomal imputed SNP markers with 17,852
whole exome sequencing gene burden scores, estimating the effects jointly within the gVAMP SE testing
framework. In the panel “WGS” we combine 16,854,878 whole genome sequence variants with 17,852 whole
exome sequencing gene burden scores, again estimating the effects jointly within the gVAMP SE testing
framework.

The genetic architecture of human height 70

When analysing 415,000 UK Biobank individuals, we find that the genetic architecture of human 71

height inferred from 16,854,878 WGS variants differs to that inferred from 8,430,446 imputed SNP 72

markers (Figure 1). gVAMP estimates the proportion of phenotypic variance in human height 73

attributable to WGS data as 0.652, as compared to 0.63 for the imputed SNP data, comparable to a 74

previously published REML estimate in a different WGS dataset [25] and family-based estimates [26]. 75

This confirms that additional phenotypic variation is attributable to variants in WGS data that are 76

missing in imputed SNP data. Surprisingly, despite this increase in attributable height variation, 77

when gVAMP maps effects to single-locus positions across the DNA in WGS data, we find 526 78

genome-wide significant effects as compared to 930 in the imputed data (Figure 1). This decrease in 79

genome-wide significant loci occurs because the WGS analysis attributes height variation to DNA 80

variants of lower minor allele frequency (MAF), as compared to the imputed SNP data analysis, 81

giving a reduction in association testing power (Figure 2). 82

For WGS variants significant at different thresholds, we determine whether the same variant, or 83

a variant within a given number of base pairs (distance, x-axis), is identified in the imputed SNP 84

data at the same significance threshold. We find little overlap in the locations of the SNPs that we 85
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Figure 2. The genetic architecture of human height inferred from 16,854,878 whole
genome sequence variants differs to that inferred from 8,430,446 imputed SNP markers
in the UK Biobank. (a) For each whole genome sequence (WGS) variant discovered at different
genome-wide significance thresholds, we determine whether we also identify a variant within a given number
of base pairs (distance, x-axis) in the imputed SNP data at the same threshold. The overlap is calculated as
the proportion of WGS variants of either > 1% or < 1% minor allele frequency (MAF) that are discovered at
a given threshold within a certain base pair distance. (b) For each whole genome sequence (WGS) variant
discovered at different genome-wide significance thresholds, we determine whether a variant was identified
within the latest height GWAS study [24] at the same threshold for a given number of base pairs (distance,
x-axis), with the overlap calculated as in (a). We select the GWAS marginal summary statistics for European
individuals including (incl. UKB), or excluding (excl. UKB) the UK Biobank (for analysis details see [24]).
(c) For each WGS variant at genome-wide significance level p ≤ 5 · 10−6, we determine the imputed SNP at
p ≤ 5 · 10−6 with the closest MAF and show a histogram of these frequency differences for WGS variants of
different frequencies. (d) For all WGS variants and imputed SNPs, we calculate the proportional contribution
to phenotypic variance across different MAF groups.

map to single-locus resolution across the two datasets within 1kb (a small proportion maps to the 86

same location), but substantial overlap within 100kb either side of the WGS findings (Figure 2a). 87

Thus, similar DNA regions are identified, but the effects are assigned to different variant locations. 88

When we determine whether the same variant, or a variant within a given number of base pairs 89

(distance, x-axis), was identified in the most recent GWAS study of human height [24], we again 90

find little overlap in the locations of the SNPs that we map to single-locus resolution across the two 91

datasets within 1kb, but substantial overlap within 100kb either side of the WGS findings (Figure 92

2b). This demonstrates that our results are predominantly replicated in large-scale GWAS studies, 93

but again that in WGS data effects are localised to different DNA variants. 94

When we then examine the properties of the WGS variants we identify, we find that WGS variants 95

of MAF ≤ 16% are generally always mis-mapped in the imputed data to variants of higher frequency 96

(Figure 2c). For each WGS variant discovered at genome-wide significance level p ≤ 5 · 10−6, we 97

determine whether there is an imputed SNP at p ≤ 5 · 10−6 within 250kb, and show a histogram of 98

the imputed variant with closest MAF, separating the discovered WGS variants by their frequency: 99

we find that, while some variants map to the same location across the two datasets (frequency 100

difference of 0), the majority do not and are assigned in the imputed data to variants of higher 101

frequency (Figure 2c). We also find that each WGS variant not discovered in the imputed data 102

can have multiple neighbouring SNPs of various MAF distribution with the same significance level 103
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(Figure S1). As a consequence, the phenotypic variance attributable to different MAF groups differs 104

in WGS as compared to imputed SNP data, with less variance attributable to common SNPs in 105

WGS data (Figure 2d). This shows that for human height, many discoveries in imputed SNP data 106

are attributable to variants of lower frequency in WGS data. Thus, fine-mapped imputed variants 107

can be systematically mis-assigned, without a full joint analysis of WGS data. 108

Despite the expectation that fine-mapped variants would show elevated marginal test statistics 109

in standard GWAS association testing, we find that many genome-wide significant height-associated 110

rare variants discovered in both the WGS and imputed data were not found in previous UK Biobank 111

analyses in Open Targets including: rs116467226, an intronic variant by TPRG1; rs766919361, an 112

intronic variant by FGF18; rs141168133, an intergenic variant 19kb from ID4; rs150556786, an 113

upstream gene variant for GRM4; rs574843917, a non-coding transcript exon variant in GPR21; 114

rs532230290, an intergenic variant 42kb from SCYL1; rs543038394, intronic in OVOL1; rs1247942912, 115

a non-coding transcript exon variant in AC024257.3; rs577630729, a regulatory region variant for 116

ISG20; and rs140846043, a non-coding transcript exon variant of MIRLET7BHG. 10 out of our top 117

38 height-associated WGS variants of ≤ 1% MAF were not previously discovered, and only become 118

height-associated when conditioning on the entire polygenic background captured by WGS data 119

within our analysis. 120

We can directly determine the relationship between effect size and minor allele frequency, 121

which again differs between WGS and imputed SNP data (Figure 3a). For variants of significance 122

p ≤ 5·10−4, the power relationship of effect size and locus variance, denoted as α in the literature [27], 123

is α = −0.318, 95% CI = 0.022, p-value ≤ 2 · 10−16 for imputed SNPs, which is consistent with 124

previous estimates. However, this is much lower for WGS variants: α = −0.566, 95% CI = 0.004, 125

p-value ≤ 2 · 10−16. Our model allows for different types of DNA observations to be combined and 126

when we include 17,852 WES gene burden scores into the analysis, we have (i) α = −0.826, 95% CI 127

= 0.083, p-value ≤ 2 · 10−16 for WES burden scores fit alongside WGS variants; and (ii) α = −0.891, 128

95% CI = 0.042, p-value ≤ 2 · 10−16 for WES burden scores fit alongside imputed SNPs. Thus, it 129

appears likely that the relationship between effect size and MAF for human height is stronger than 130

previously inferred for imputed SNP data. 131

We highlight the benefits of joint estimation to explore genetic architecture, where controlling 132

for LD allows effects to be summed over different categories, facilitating gene/annotation analyses. 133

We find a general concordance of the estimated effect sizes of the 17,852 WES gene burden scores 134

when fit alongside either imputed or WGS data, for most but not all genes (Figure 3b). We sum 135

up the joint effects to determine the variation in height attributable to each gene, and again find 136

general concordance across markers annotated to each of the 17,852 genes, conditional on all other 137

markers, across the imputed SNP and WGS analysis (Figure 3c). We see little relationship between 138

the variance attributable to the burden score of a given gene and the SNPs annotated to the gene 139

(Figure S2), with some notable exceptions: ACAN, ADAMTS17, ADAMTS10, and LCORL. The 140

top genes, where gVAMP attributes ≥ 0.04% of height variation in addition to those listed above are 141

EFEMP1, ZBTB38, and ZFAT. All the 38 genome-wide significant gene burden scores are for genes 142

that have previous GWAS height associations linked to them in Open Targets, but our analysis 143

suggests that the effect is attributable to a rare protein coding variant rather than the common 144

variants suggested by current genome-wide association studies. 145
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Figure 3. The relationship between effect size and minor allele frequency for human
height inferred from whole genome sequence data differs to that inferred from imputed
SNP variants in the UK Biobank. (a) For different genome-wide significance thresholds, we plot the
relationship between joint effect size and minor allele frequency (MAF) for imputed SNPs, whole genome
sequence (WGS) variants and whole exome sequence (WES) burden scores fit alongside either imputed SNPs
or WGS data. (b) Across 17,852 WES gene burden scores, we find general concordance of the estimated effect
sizes when fit alongside either imputed or WGS data, for most but not all genes, with squared correlation
0.532. (c) Likewise, we also find general concordance of the phenotypic variance attributable to markers
annotated to each of the 17,852 genes, when fit conditional on either imputed or WGS variants, with squared
correlation 0.494. (d) Finally, we show similar patterns of enrichment when annotating markers to functional
annotations in either the proportion of variance attributable to each group (labelled “variance”), or in the
average effect size relative to the genome-wide average effect size (labelled “effect”) from joint estimation of
either imputed or WGS data.

Additionally, across annotations, we find that the phenotypic variance attributable to different 146

DNA regions is higher for intergenic and intronic variants (Figure 3d). However, when adjusting 147

for the number of SNPs contained by each category by using the average effect size of the group 148

relative to the average effect size genome-wide, we find that exonic variants that are nonsynonymous, 149

splicing and stop-gain have the largest average effects of the WGS variants included within our 150
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model (Figure 3d). Taken together, joint association testing of all WGS variants resolves many 151

previously discovered height-associated DNA regions to rare DNA variants where exonic variants 152

have large effect sizes, insights that cannot be provided by other GWAS approaches at a scale of 153

17M DNA variants. 154

Validation and benchmarking of gVAMP 155

Table 1. Polygenic risk score prediction accuracy R2 for 13 different traits from
statistical models trained in the UK Biobank data and tested in a UK Biobank hold-out
set. Training data sample size and trait codes are given in Table S1 for each trait. The sample size of
the hold-out test set is 15, 000 for all phenotypes. LDpred2 and SBayesR give estimates obtained from the
LDpred2 and SBayesR software respectively, using summary statistic data of 8,430,446 SNPs obtained from
the REGENIE software. GMRM denotes estimates obtained from a Bayesian mixture model at 2,174,071
SNP markers (“GMRM 2M”). gVAMP denotes estimates obtained from an adaptive EM Bayesian mixture
model within a vector approximate message passing (VAMP) framework, using either 887,060 (“gVAMP
880k”), 2,174,071 (“gVAMP 2M”), or 8,430,446 SNP markers (“gVAMP 8M”).

Phenotype LDpred2 SBayesR GMRM 2.17M gVAMP 880k gVAMP 2.17M gVAMP 8M
CHOL 0.147 0.149 0.153 0.140 0.152 0.153
EOSI 0.107 0.112 0.122 0.114 0.120 0.124

HbA1c 0.087 0.090 0.092 0.085 0.092 0.095
HDL 0.199 0.208 0.213 0.192 0.209 0.219
MCH 0.178 0.215 0.221 0.203 0.218 0.223
MCV 0.196 0.234 0.244 0.222 0.240 0.244
RBC 0.186 0.191 0.199 0.182 0.195 0.198
BMI 0.100 0.118 0.133 0.107 0.132 0.141
DBP 0.065 0.067 0.071 0.058 0.065 0.071
FVC 0.098 0.103 0.111 0.097 0.109 0.112
BMD 0.188 0.194 0.201 0.183 0.198 0.204
HT 0.231 0.362 0.450 0.419 0.449 0.457
SBP 0.068 0.071 0.073 0.061 0.072 0.073

As gVAMP is the only algorithm that scales to tens of millions of WGS variants, we can only 156

validate and benchmark gVAMP against state-of-the-art approaches in a number of alternative 157

datasets. We find that (i) gVAMP outperforms summary statistic approaches [6, 7] for polygenic 158

risk score prediction, (ii) it outperforms REGENIE [1] for mixed-linear model association testing, 159

and (iii) it has similar performance to MCMC approaches [8], but in a fraction of the compute time, 160

which allows analyses at far larger scale that then result in improved performance (Figure 4). 161

Specifically, we compare the prediction accuracy of gVAMP to the widely used summary statistic 162

methods LDpred2 [6] and SBayesR [7], and to the individual-level method GMRM [8] for imputed 163

SNP data in the UK Biobank across 13 traits (training data sample size and trait codes given in 164

Table S1). gVAMP outperforms all methods for most phenotypes and, in comparison to published 165

estimates, we obtain the highest out-of-sample prediction accuracy yet reported to date for most 166

traits. Specifically, for human height, we obtain an accuracy of 45.7%, which is a 97.8% relative 167

increase over LDpred2 (Table 1 and Figure 4) and higher than the accuracy obtained from the latest 168

height GWAS study of 3.5M people of 44.7% [24], despite our sample size of only 414,055. However, 169

we caution that modelling WGS data does not improve the out-of-sample prediction obtained as 170
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Figure 4. Validating gVAMP through polygenic risk score accuracy and association
testing benchmarks in the UK Biobank within imputed SNP data. (a) Relative prediction
accuracy of gVAMP in a hold-out set of the UK Biobank across 13 traits as compared to other approaches.
(b) Relative number of leave-one-chromosome-out (LOCO) testing of gVAMP across 13 UK Biobank traits as
compared to other approaches at 8,430,446 markers. (c) Number of genome-wide fine-mapped associations
obtained via gVAMP SE association testing for 13 UK Biobank traits at a p-value threshold of less than
5 · 10−8 for all 8,430,446 SNP markers.

compared to the 8.4M imputed SNP results for human height, and this is again likely because of 171

the reduction in the MAF of the markers included within the WGS model. 172

Generally, gVAMP performs similarly to GMRM, an MCMC sampling algorithm, improving over 173
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Table 2. Genome-wide significant associations for 13 UK Biobank traits from GMRM,
gVAMP and REGENIE at 8,430,446 genetic variants. REGENIE denotes results obtained from
leave-one-chromosome-out (LOCO) testing using the REGENIE software, with 882,727 SNP markers used
for step 1 and 8,430,446 markers used for the LOCO testing of step 2. GMRM refers to LOCO testing at
8,430,446 SNPs, using a Bayesian MCMC mixture model in step 1, with either 882,727 (“GMRM 880k”)
or 2,174,071 SNP markers (“GMRM 2M”). gVAMP refers to LOCO testing at 8,430,446 SNPs, using the
framework presented here, where in step 1 either 882,727 (“gVAMP 880k”), 2,174,071 (“gVAMP 2M”), or
8,430,446 SNP markers (“gVAMP 8M”) were used. We also present leave-one-out (“gVAMP 8M LOO”,
see Methods) and state-evolution (SE) p-value testing for 8,430,446 SNP markers (“gVAMP 8M SE”, see
Methods). For LOCO testing, the values give the number of genome-wide significant linkage disequilibrium
independent associations selected based upon a p-value threshold of less than 5 · 10−8 and R2 between SNPs
in a 5 Mb genomic segment of less than 1%. For LOO and SE testing, values give the number of genome-wide
significant associations selected based upon a p-value threshold of less than 5 · 10−8.

Phenotype REGENIE GMRM 2M gVAMP 880k gVAMP 2M gVAMP 8M gVAMP 8M LOO gVAMP 8M SE
CHOL 571 627 567 603 632 379 274
EOSI 572 693 607 630 693 568 367

HbA1c 337 429 365 385 413 229 193
HDL 692 1009 759 812 1092 488 297
MCH 746 889 773 810 916 994 470
MCV 970 1190 997 1062 1185 875 607
RBC 897 1229 982 1079 1325 764 312
BMI 688 1376 852 1175 1266 220 203
DBP 291 425 343 419 468 108 47
FVC 549 994 664 721 986 323 132
BMD 522 874 615 668 867 561 331
HT 2712 5070 3615 4452 5242 2553 930
SBP 311 499 351 388 529 160 106

it when analysing the full set of 8,430,446 imputed SNPs (Table 1 and Figure 4). gVAMP estimates 174

the h2
SNP of each of the 13 traits at an average of 3.4% less than GMRM when using 2,174,071 SNP 175

markers, but at an average of 3.9% greater than GMRM when using 8,430,446 SNP markers. This 176

implies that more of the phenotypic variance is captured by the SNPs when the full imputed SNP 177

data are used (Figure S3). We note that GMRM already takes several days to analyze 2,174,071 178

SNPs and would take many weeks to analyze 8,430,446 SNPs, making it entirely infeasible to run at 179

that scale. In contrast, gVAMP yields estimates on 8,430,446 SNPs in under a day (Supplementary 180

Note 1, Figure S5c). 181

Second, we highlight that gVAMP can also be used for standard leave-one-chromosome-out 182

(LOCO) statistical testing. We compare gVAMP to REGENIE and to GMRM for association testing 183

of the 13 traits within a MLMA framework. gVAMP performs similarly in LOCO testing conducted 184

using a predictor from GMRM, with the use of the full 8,430,446 imputed SNP markers generally 185

improving performance (Table 2 and Figure 4b). REGENIE yields far fewer associations than 186

either GMRM or gVAMP for all traits (Table 2 and Figure 4b), consistent with simulation study 187

results presented in Supplementary Note 1. Using the gVAMP SE association testing framework, 188

we find hundreds of marker associations for each trait that can be localised to the single locus 189

level, conditional on all other SNPs genome-wide (Table 2, Figure 4c), with the obvious caveat that 190

these results are for imputed SNP data and re-analysis of WGS data may yield different results as 191

we show above for height. For all 13 traits, we find that the SE association estimates we obtain 192

converge in number and location after iteration 20 (Figure S4). 193
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In addition, we conduct a series of simulation studies showing that gVAMP is the only approach 194

to generate genetic predictors and association test statistics in a single step, without additional 195

computations, with accuracy similar to individual-level MCMC methods achieved in a fraction of 196

the compute time (Supplementary Note 1). As compared to REGENIE, gVAMP completes in 2/3 of 197

the time given the same data and compute resources, and it is dramatically faster (12.5× speed-up) 198

than GMRM (Supplementary Note 1, Figure S5c). 199

Discussion 200

Our results reveal that a different genetic architecture for human height is inferred in WGS data, 201

as compared to imputed SNP data, which shows that fine-mapping results can be miscalibrated 202

by missing rare variants. Although large sample sizes of WGS data will be needed to pinpoint the 203

variants responsible for the heritability of traits, our results show that the prioritization of relevant 204

genes and gene sets is feasible at smaller sample sizes in imputed data. We highlight that gVAMP 205

is not restricted to the analysis of WGS data, and it also provides a general approach to obtain 206

genetic predictors and MLMA association test statistics in a single step, with accuracy similar to 207

individual-level MCMC methods, but in a fraction of the compute time. We demonstrate this both 208

in an extensive simulation study and in the analysis of 13 UK Biobank traits. Importantly, we 209

provide a different association testing approach where the effects of each locus or burden score 210

can be estimated conditional on all other DNA variation genome-wide. This allows associations to 211

be localised to the single-locus, or single-gene level, refining associations by testing each of them 212

against a full genetic background of millions of DNA variants. 213

There are a number of remaining limitations. Our results suggest that the detection and accurate 214

estimation of the effects of height-associated variants is expected to be difficult even with millions 215

of WGS samples. There are a very large number of rare variants within the human population 216

that are missing from our WGS analysis of 16,854,878 variants, and we believe it is quite likely 217

that the true underlying genetic architecture of human height is even rarer than we present here. 218

Two solutions could be to (i) apply gVAMP region-by-region, or (ii) make slight modifications in 219

the implementation, so that gVAMP streams data, at the cost of increased run time. Additionally, 220

while our approach can be applied within any sub-grouping of data (by age, genetic sex, ethnicity, 221

etc.), this is not within the scope of the present work. Combining inference across different groups 222

is of great importance [28], and previous work suggests that better modelling within a single large 223

biobank can facilitate improved association testing in other global biobanks [29]. Here, while our 224

approach can be used in the same way, maximising association and prediction across the human 225

population requires a model that is capable of accounting for differences in the design matrix (minor 226

allele frequency and linkage disequilibrium patterns) across different datasets. Our ongoing work 227

now aims at expanding the gVAMP framework to make inference across a diverse range of human 228

groups, to model different outcome distributions (binary outcomes, time-to-event, count data, etc.), 229

to allow for different effect size relationships across allele frequency and LD groups, to model 230

multiple outcomes jointly, and to do all of this using summary statistic as well as individual-level 231

data across different biobanks. This is key to obtaining the sample sizes that are likely required to 232

fully explore the genetic basis of complex traits. 233
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In summary, gVAMP is a different way to create genetic predictors and to conduct association 234

testing. With increasing sample sizes reducing standard errors, a vast number of genomic regions 235

are being identified as significantly associated with trait outcomes by one-SNP-at-a-time association 236

testing. Such large numbers of findings will make it increasingly difficult to determine the relative 237

importance of a given mutation, especially in whole genome sequence data with dense, highly 238

correlated variants. Thus, it is crucial to develop statistical approaches fitting all variants jointly 239

and asking whether, given the LD structure of the data, there is evidence for an effect at each locus, 240

conditional on all others. 241

Methods 242

gVAMP algorithm 243

Approximate message passing (AMP) was originally proposed for linear regression [11, 14, 30] 244

assuming a Gaussian design matrix X. To accommodate a wider class of structured design matrices, 245

vector approximate message passing (VAMP) was introduced in [12]. The performance of VAMP 246

can be precisely characterized via a deterministic, low-dimensional state evolution recursion, for any 247

right-orthogonally invariant design matrix. We recall that a matrix is right-orthogonally invariant if 248

its right singular vectors are distributed according to the Haar measure, i.e., they are uniform in 249

the group of orthogonal matrices. 250

gVAMP extends EM-VAMP, introduced in [12,22,23], in which the prior parameters are adaptively 251

learnt from the data via EM, and it is an iterative procedure consisting of two steps: (i) denoising, 252

and (ii) linear minimum mean square error estimation (LMMSE). The denoising step accounts for 253

the prior structure given a noisy estimate of the signal β, while the LMMSE step utilizes phenotype 254

values to further refine the estimate by accounting for the LD structure of the data. 255

A key feature of the algorithm is the so called Onsager correction: this is added to ensure the 256

asymptotic normality of the noise corrupting the estimates of β at every iteration. Here, in contrast 257

to MCMC or other iterative approaches, the normality is guaranteed under mild assumptions on the 258

normalized genotype matrix. This property allows a precise performance analysis via state evolution 259

and, consequently, the optimization of the method. 260

In particular, the quantity γ1,t in line 7 of Algorithm 1 is the state evolution parameter tracking 261

the error incurred by r1,t in estimating β at iteration t. The state evolution result gives that r1,t is 262

asymptotically Gaussian, i.e., for sufficiently large N and P , r1,t is approximately distributed as 263

N (β, γ−1
1,t I). Here, β represents the signal to be estimated, with the prior learned via EM steps at 264

iteration t: 265

βi ∼ (1 − λt) · δ0(·) + λt ·
L∑

l=1
πt,l · N (·, 0, σ2

t,l), ∀ i = 1, . . . , P.

Compared to Equation (2), the subscript t in λt, πt,l, σt,l indicates that these parameters change 266

through iterations, as they are adaptively learned by the algorithm. Similarly, r2,t is approximately 267

distributed as N (β, γ−1
2,t I). The Gaussianity of r1,t, r2,t is enforced by the presence of the Onsager 268

coefficients α1,t and α2,t, see lines 17 and 22 of Algorithm 1, respectively. We also note that α1,t 269
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Algorithm 1 gVAMP
1: Input: preprocessed normalized genotype matrix X ∈ RN×P , max number of iterations

Nit, initial estimate of effect sizes r1,0 = 0P ∈ RP , initial estimate of effect sizes precision
γ1,0 = 10−6 > 0, initial estimate of noise precision γϵ,0 = 2, initial set of parameters defining
the prior distribution Θ0 = {λ, (π(0)

i )L
i=1, (σ(0)

i )L
i=1}, max number of variance auto-tuning steps

Nvar_tune = 5 ∈ N, threshold for stopping criterion ε = 10−4 > 0, damping factor ρ ∈ (0, 1).
2: for t = 0, 1, . . . , Nit do
3: Denoising step
4: for k = 0, 1, . . . , Nvar_tune do
5: β̂1,t = E[β|r1,t = β + N (0, γ−1

1,t I), γ1,t, Θt]
6: if t > 0 then
7: Variance auto-tuning step of estimation error for β in the denoising step, called γ1,t

8: EM update of the prior distribution parameters Θ, called Θt

9: if |γ1,t − γ
(previous)
1,t | < 10−3 then

10: break
11: end if
12: end if
13: end for
14: if t ≥ 0 then
15: β̂1,t = ρ · β̂1,t + (1 − ρ) · β̂1,t−1
16: end if
17: α1,t = γ1,t · ⟨Var[β|r1,t = β + N (0, γ−1

1,t I), γ1,t, Θt]⟩
18: γ2,t = γ1,t · (1 − α1,t)/α1,t

19: r2,t = (β̂1,t − α1,tr1,t)/(1 − α1,t)

20: LMMSE step
21: β̂2,t = (γϵ,tX

T X + γ2,tI)−1(γϵ,tX
T y + γ2,tr2,t)

22: α2,t = γ2,t · Tr[(γϵ,tX
T X + γ2,tI)−1]/P

23: γ1,t+1 = γ2,t · (1 − α2,t)/α2,t

24: if t > 1 then
25: Variance auto-tuning step of estimation error for β in the LMMSE step, called γ2,t

26: end if
27: r1,t+1 = (β̂2,t − α2,tr2,t)/(1 − α2,t)
28: EM update of the estimate of γϵ, called γϵ,t

29: if t ≥ 1 and ||β̂1,t − β̂1,t−1||2/||β̂1,t−1||2 < ε then
30: break
31: end if
32: end for
33: return β̂1,t

(resp. α2,t) is the state evolution parameter linked to the error incurred by β̂1,t (resp. β̂2,t). 270

The vectors r1,t, r2,t are obtained after the LMMSE step, and they are further improved via the 271

denoising step, which respectively gives β̂1,t, β̂2,t. In the denoising step, we exploit our estimate of 272

the approximated posterior by computing the conditional expectation of β with respect to r1,t, r2,t 273

in order to minimize the mean square error of the estimated effects. For example, let us focus on 274
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the pair (r1,t, β̂1,t) (analogous considerations hold for (r2,t, β̂2,t)). Then, we have that 275

β̂1,t = ft(r1,t) = E[β|r1,t = β + N (0, γ−1
1,t I), λt, {πt,l}L

l=1, {σ2
t,l}L

l=1]. (3)

Here, ft : R → R denotes the denoiser at iteration t and the notation ft(r1,t) assumes that the 276

denoiser ft is applied component-wise to elements of r1,t. Note that, in line 15 of Algorithm 1, we 277

take this approach one step further by performing an additional step of damping, see “Algorithm 278

stability” below. 279

From Bayes theorem, one can calculate the posterior distribution (which here has the form of 280

a spike-and-slab mixture of Gaussians) and obtain its expectation. Hence, by denoting a generic 281

component of r1,t as r1, it follows that 282

ft(r1) =
λt ·

∑L
l=1 πt,l · r1·σ2

t,l

γ−1
1,t +σ2

t,l

· N (r1; 0, γ−1
1,t + σ2

t,l)

(1 − λt) · N (r1; 0, γ−1
1,t ) + λt

∑L
l=1 πt,l · N (r1; 0, γ−1

1,t + σ2
t,l)

=
λt ·

∑L
l=1 πt,l · r1·σ2

t,l

(γ−1
1,t +σ2

t,l
)3/2 · EXP(σ2

t,l)

(1 − λt) · γ
1/2
1 · EXP(0) + λt ·

∑L
l=1 πt,l · 1

(γ−1
1,t +σ2

t,l
)1/2 · EXP(σ2

t,l)
, (4)

where N (r1; 0, γ−1
1,t + σ2

t,l) denotes the probability density function of a Gaussian with mean 0 and 283

variance γ−1
1,t + σ2

t,l evaluated at r1. Furthermore, we set 284

EXP(σ2) = exp
(

− r2
1
2 ·

σ2
t,∗ − σ2

(γ−1
1,t + σ2)(γ−1

1,t + σ2
t,∗)

)
,

with σ2
t,∗ := maxl(σ2

t,l). This form of the denoiser is particularly convenient, as we typically deal with 285

very sparse distributions when estimating genetic associations. We also note that the calculation of 286

the Onsager coefficient in line 17 of Algorithm 1 requires the evaluation of a conditional variance, 287

which is computed as the ratio of the derivative of the denoiser over the error in the estimation of 288

the signal, i.e., 289

Var[βi|(r1,t)i = βi + N (0, γ−1
1,t I), λt, {πt,l}L

l=1, {σ2
t,l}L

l=1] = f ′
t((r1,t)i)/γ1,t. (5)

The calculation of the derivative of ft is detailed in Supplementary Note 2. 290

If one has access to the singular value decomposition (SVD) of the data matrix X, the per- 291

iteration complexity is of order O(NP ). However, at biobank scales, performing the SVD is 292

computationally infeasible. Thus, the linear system (γϵ,tX
T X + γ2,tI)−1(γϵ,tX

T y + γ2,tr2,t) (see 293

line 21 of Algorithm 1) needs to be solved using an iterative method, in contrast to having an 294

analytic solution in terms of the elements of the singular value decomposition of X. In the next 295

section, we provide details on how we overcome this issue. 296

Scaling up using warm-start conjugate gradients 297

We approximate the solution of the linear system (γϵ,tX
T X + γ2,tI)−1(γϵ,tX

T y + γ2,tr2,t) with 298

a symmetric and positive-definite matrix via the conjugate gradient method (CG), see Algorithm 299
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2 in Supplementary Note 2, which is included for completeness. If κ is the condition number of 300

γϵ,tX
T X + γ2,tI, the method requires O(

√
κ) iterations to return a reliable approximation. 301

Additionally, inspired by [31], we initialize the CG iteration with an estimate of the signal from 302

the previous iteration of gVAMP. This warm-starting technique leads to a reduced number of CG 303

steps that need to be performed and, therefore, to a computational speed-up. However, this comes 304

at the expense of potentially introducing spurious correlations between the signal estimate and the 305

Gaussian error from the state evolution. Such spurious correlations may lead to algorithm instability 306

when run for a large number of iterations (also extensively discussed below). This effect is prevented 307

by simply stopping the algorithm as soon as the R2 measure on the training data or the number of 308

SE associations starts decreasing. 309

In order to calculate the Onsager correction in the LMMSE step of gVAMP (see line 22 of 310

Algorithm 1), we use the Hutchinson estimator [32] to estimate the quantity Tr[(γϵ,tX
T X + 311

γ2,tI)−1]/P . We recall that this estimator is unbiased, in the sense that, if u has i.i.d. entries equal 312

to −1 and +1 with the same probability, then 313

E[uT (γϵ,tX
T X + γ2,tI)−1u/P ] = Tr[(γϵ,tX

T X + γ2,tI)−1]/P.

Furthermore, in order to perform an EM update for the noise precision γϵ one has to calculate the 314

trace of a matrix which is closely connected to the one we have seen in the previous paragraph. 315

In order to do so efficiently, i.e., to avoiding solving another large-dimensional linear system, we 316

store the inverted vector (γϵ,tX
T X + γ2,tI)−1u and reuse it again in the EM update step (see the 317

subparagraph on EM updates). 318

Algorithm stability 319

We find that the application of existing EM-VAMP algorithms to the UK Biobank dataset leads 320

to diverging estimates of the signal. This is due to the fact that the data matrix (the SNP data) 321

might not conform to the properties required in [12], especially that of right-rotational invariance. 322

Furthermore, incorrect estimation of the noise precision in line 28 of Algorithm 1 may also lead to 323

instability of the algorithm, as previous applications of EM-VAMP generally do not leave many 324

hyperparameters to estimate. 325

To mitigate these issues, different approaches have been proposed including row or/and column 326

normalization, damping (i.e., doing convex combinations of new and previous estimates) [33], and 327

variance auto-tuning [23]. In particular, to prevent EM-VAMP from diverging and ensure it follows 328

its state evolution, we empirically observe that the combination of the following techniques is crucial. 329

1. We perform damping in the space of denoised signals. Thus, line 15 of Algorithm 1 reads as 330

β̂1,t = ρ · E[β|r1,t, Θt] + (1 − ρ) · β̂1,t−1,

in place of β̂1,t = E[β|r1,t, Θt]. Here, ρ ∈ (0, 1) denotes the damping factor. This ensures that 331

the algorithm is making smaller steps when updating a signal estimate. 332

2. We perform auto-tuning of γ1,t via the approach from [23]. Namely, in the auto-tuning step, 333

one refines the estimate of γ1,t and the prior distribution of the effect size vector β by jointly 334
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re-estimating them. If we denote the previous estimates of γ1,t and Θ with γ
(previous)
1,t and 335

Θ(previous), then this is achieved by setting up an expectation-maximization procedure whose 336

aim is to maximize 337

E
[
log p(β, r1,t|γ1,t, Θ)|r1,t, γ

(previous)
1,t , Θ(previous)]

with respect to γ1,t and Θ. 338

3. We filter the design matrix for first-degree relatives to reduce the correlation between rows, 339

which has the additional advantage of avoiding potential confounding of shared-environmental 340

effects among relatives. 341

Estimation of the prior and noise precision via EM 342

The VAMP approach in [12] assumes exact knowledge of the prior on the signal β, which deviates 343

from the setting in which genome-wide association studies are performed. Hence, we adaptively 344

learn the signal prior from the data using expectation-maximization (EM) steps, see lines 8 and 345

28 of Algorithm 1. This leverages the variational characterization of EM-VAMP [22], and its 346

rigorous theoretical analysis presented in [23]. In this subsection, we summarize the hyperparameter 347

estimation results derived based upon [34] in the context of our model. We find that the final 348

update formulas for our hyperparameter estimates are as follows. 349

• Sparsity rate λ: We define {ζj}P
j=1 as: 350

ζj :=
λt ·

∑L
i=1 πi,t · N

(
(r1,t)j ; 0, σ2

i,t + γ−1
1,t

)
λt ·

∑L
i=1 πi,t · N

(
(r1,t)j ; 0, σ2

i,t + γ−1
1,t

)
+ (1 − λt) · N

(
(r1,t)j ; 0, γ−1

1,t

) , ∀j = 1, . . . , P.

The intuition behind {ζj}P
j=1 is that each ζj tells what fraction of posterior probability mass 351

was assigned to the event that it has a non-zero effect. Then, the update formula for the 352

sparsity rate λt+1 reads as 353

λt+1 = 1
P

P∑
j=1

ζj .

• Probabilities of mixture components in the slab part {πi}L
i=1 : We define {ξj,i}L,P

i=1,j=1 as 354

ξj,i =
πi,t · N ((r1,t)j ; 0, σ2

i + γ−1
1,t )∑L

l=1 ·πl,t · N ((r1,t)j ; 0, σ2
l + γ−1

1,t )
, ∀i = 1, . . . , L, ∀j = 1, . . . , P.

The intuition behind {ξj,i}L,P
i=1,j=1 is that each ξj,i approximates the posterior probability that 355

a marker j belongs to a mixture i conditional on the fact that it has non-zero effect. Thus, 356

the update formula for πi,t+1 reads as 357

πi,t+1 =
∑P

j=1 ζjξj,i∑P
j=1 ζj

, ∀i = 1, . . . , L.
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• Variances of mixture components in the slab part {σ2
i }L

i=1 : Using the same notation, the up- 358

date formula reads as 359

σ2
i,t+1 =

∑P
j=1 ζj · ξj,i ·

[(
(r1,t)j ·γ1,t

γ1,t+σ−2
i,t

)2
+ 1

γ1,t+σ−2
i,t

]
∑P

j=1 ζj · ξj,i

, ∀i = 1, . . . , L.

Here we also introduce a mixture merging step, i.e., if the two mixtures are represented by 360

variances that are close to each other in relative terms, then we merge those mixtures together. 361

Thus, we adaptively learn the mixture number. 362

• Precision of the error γϵ : We define Σt := (γϵ,tX
T X + γ2,tI)−1 . Then, the update formula 363

for the estimator of γϵ reads as 364

γϵ,t+1 = 1
||y−Xβ̂2,t||2

N + Tr(XΣtXT )
N

.

In the formula above, the term ||y − Xβ̂2,t||2/N takes into account the quality of the fit 365

of the model, while the term Tr(XΣtX
T )/N prevents overfitting by accounting for the 366

structure of the prior distribution of the effect sizes via the regularization term γ2,t. We 367

note that the naive evaluation of this term would require an inversion of a matrix of size 368

P × P . We again use the Hutchinson estimator for the trace to approximate this object, i.e., 369

Tr(XΣtX
T ) = Tr(XT XΣt) ≈ uT (XT XΣt)u, where u has i.i.d. entries equal to −1 and +1 370

with the same probability. Furthermore, instead of solving a linear system Σtu with a newly 371

generated u, we re-use the u sampled when constructing the Onsager coefficient, thus saving 372

the time needed to construct the object Σtu. 373

C++ code optimization 374

Our open-source gVAMP software (https://github.com/medical-genomics-group/gVAMP) is 375

implemented in C++, and it incorporates parallelization using the OpenMP and MPI libraries. MPI 376

parallelization is implemented in a way that the columns of the normalized genotype matrix are 377

approximately equally split between the workers. OpenMP parallelization is done on top of that and 378

used to further boost performance within each worker by simultaneously performing operations such 379

as summations within matrix vector product calculations. Moreover, data streaming is employed 380

using a lookup table, enabling byte-by-byte processing of the genotype matrix stored in PLINK 381

format with entries encoded to a set {0, 1, 2}: 382(
0 1 0 0 1 1 1 0

)
7→

(
NaN 2 0 1

)
383

The lookup table enables streaming in the data in bytes, where every byte (8 bits) encodes the 384

information of 4 individuals. This reduces the amount of memory needed to load the genotype 385

matrix. In addition, given a suitable computer architecture, our implementation supports SIMD 386

instructions which allow handling four consecutive entries of the genotype matrix simultaneously. 387

To make the comparisons between different methods fair, the results presented in the paper do 388

not assume usage of SIMD instructions. Additionally, we emphasize that all calculations take 389

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2023.09.14.557703doi: bioRxiv preprint 

https://github.com/medical-genomics-group/gVAMP
https://doi.org/10.1101/2023.09.14.557703
http://creativecommons.org/licenses/by/4.0/


un-standardized values of the genotype matrix in the form of standard PLINK binary files, but are 390

conducted in a manner that yields the parameter estimates one would obtain if each column of the 391

genotype matrix was standardized. 392

UK Biobank data 393

Participant inclusion 394

UK Biobank has approval from the North-West Multicenter Research Ethics Committee (MREC) 395

to obtain and disseminate data and samples from the participants (https://www.ukbiobank.ac. 396

uk/ethics/), and these ethical regulations cover the work in this study. Written informed consent 397

was obtained from all participants. 398

Our objective is to use the UK Biobank to provide proof of principle of our approach and to 399

compare to state-of-the-art methods in applications to biobank data. We first restrict our analysis 400

to a sample of European-ancestry UK Biobank individuals to provide a large sample size and 401

more uniform genetic background with which to compare methods. To infer ancestry, we use both 402

self-reported ethnic background (UK Biobank field 21000-0), selecting coding 1, and genetic ethnicity 403

(UK Biobank field 22006-0), selecting coding 1. We project the 488,377 genotyped participants 404

onto the first two genotypic principal components (PC) calculated from 2,504 individuals of the 405

1,000 Genomes project. Using the obtained PC loadings, we then assign each participant to the 406

closest 1,000 Genomes project population, selecting individuals with PC1 projection ≤ absolute 407

value 4 and PC2 projection ≤ absolute value 3. We apply this ancestry restriction as we wish to 408

provide the first application of our approach, and to replicate our results, within a sample that 409

is as genetically homogeneous as possible. Our approach can be applied within different human 410

groups (by age, genetic sex, ethnicity, etc.). However, combining inference across different human 411

groups requires a model that is capable of accounting for differences in minor allele frequency and 412

linkage disequilibrium patterns across human populations. Here, the focus is to first demonstrate 413

that our approach provides an optimal choice for biobank analyses, and ongoing work focuses on 414

exploring differences in inference across a diverse range of human populations. Secondly, samples 415

are also excluded based on UK Biobank quality control procedures with individuals removed of (i) 416

extreme heterozygosity and missing genotype outliers; (ii) a genetically inferred gender that did 417

not match the self-reported gender; (iii) putative sex chromosome aneuploidy; (iv) exclusion from 418

kinship inference; (v) withdrawn consent. 419

Whole genome sequence data 420

We process the population-level WGS variants, recently released on the UK Biobank DNAnexus 421

platform. We use BCF tools to process thousands of pVCF files storing the chunks of DNA sequences, 422

applying elementary filters on genotype quality (GQ ≤ 10), local allele depth (smpl_sum LAD < 8), 423

missing genotype (F_MISSING > 0.1), and minor allele frequency (MAF < 0.0001). We select this 424

MAF threshold as it means that on average about 80 people will have a genotype that is non-zero, 425

which was the lowest frequency for which we felt that there was adequate power in the data to 426

detect the variants. While we accept that it is quite possible to include additional rare variants, we 427

wished for a conservative threshold that was at least an order of magnitude lower than the threshold 428
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we used for the imputed SNP data described below to facilitate a comparison among the analysis of 429

the different data types. 430

Simultaneously, we normalize the indels to the most recent reference, removing redundant data 431

fields to reduce the size of the files. For all chromosomes separately, we then concatenate all 432

the pre-processed VCF files and convert them into PLINK format. The compute nodes on the 433

DNAnexus system are quite RAM limited, and it is not possible to analyse the WGS data outside 434

of this system, which restricts the number of variants that can be analysed jointly. To reduce the 435

number of variants to the scale which can be fit in the largest computational instance available on 436

the DNAnexus platform, we rank variants by minor allele frequency and remove the variants in 437

high LD with the most common variants using the PLINK clumping approach, setting a 1000 kb 438

radius, and R2 threshold to 0.36. This selects a focal common variant from a group of other common 439

variants with correlation ≥ 0.6, which serves to capture the common variant signal into groups, 440

whilst keeping all rare variation within the data. Finally, we remove the variants sharing the same 441

base pair position, not keeping any of these duplicates, and merge all the chromosomes into a large 442

data instance, including the final 16,854,878 WGS variants. 443

Imputed SNP data 444

We use genotype probabilities from version 3 of the imputed autosomal genotype data provided 445

by the UK Biobank to hard-call the single nucleotide polymorphism (SNP) genotypes for variants 446

with an imputation quality score above 0.3. The hard-call-threshold is 0.1, setting the genotypes 447

with probability ≤ 0.9 as missing. From the good quality markers (with missingness less than 5% 448

and p-value for the Hardy-Weinberg test larger than 10−6, as determined in the set of unrelated 449

Europeans) we select those with MAF ≥ 0.002 and rs identifier, in the set of European-ancestry 450

participants, providing a dataset of 9,144,511 SNPs. From this, we took the overlap with the 451

Estonian Genome Centre data as described in [8] to give a final set of 8,430,446 autosomal markers. 452

For our simulation study and UK Biobank analyses described below, we select two subsets of 453

8,430,446 autosomal markers. We do this by removing markers in very high LD using the “clumping” 454

approach of PLINK, where we rank SNPs by minor allele frequency and then select the highest 455

MAF SNPs from any set of markers with LD R2 ≥ 0.8 within a 1MB window to obtain 2,174,071 456

markers. We then further subset this with LD R2 ≥ 0.5 to obtain 882,727 SNP markers. This 457

results in the selection of two subsets of “tagging variants”, with only variants in very high LD 458

with the tag SNPs removed. This allows us to compare analysis methods that are restricted in the 459

number of SNPs that can be analysed, but still provide them a set of markers that are all correlated 460

with the full set of imputed SNP variants, limiting the loss of association power by ensuring that 461

the subset is correlated to those SNPs that are removed. 462

Whole exome sequence data burden scores 463

We then combine this data with the UK Biobank whole exome sequence data. The UK Biobank 464

final release dataset of population level exome variant calls files is used (https://doi.org/10. 465

1101/572347). Genomic data preparation and aggregation is conducted with custom pipeline (repo) 466

on the UK Biobank Research Analysis Platform (RAP) with DXJupyterLab Spark Cluster App 467
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(v. 2.1.1). Only biallelic sites and high quality variants are retained according to the following 468

criteria: individual and variant missingness < 10%, Hardy-Weinberg Equilibrium p-value > 10−15, 469

minimum read coverage depth of 7, at least one sample per site passing the allele balance threshold 470

> 0.15. Genomic variants in canonical, protein coding transcripts (Ensembl VERSION) are 471

annotated with the Ensembl Variant Effect Predictor (VEP) tool (docker image ensemblorg/ensembl- 472

vep:release_110.1). High-confidence (HC) loss-of-function (LoF) variants are identified with the 473

LOFTEE plugin (v1.0.4_GRCh38). For each gene, homozygous or multiple heterozygous individuals 474

for LoF variants have received a score of 2, those with a single heterozygous LoF variant 1, and the 475

rest 0. We chose to use the WES data to create the burden scores rather than the WGS data as 476

existing well-tested pipelines were available. 477

Phenotypic records 478

Finally, we link these DNA data to the measurements, tests, and electronic health record data 479

available in the UK Biobank [35] and, for the imputed SNP data, we select 7 blood based biomarkers 480

and 6 quantitative measures which show ≥ 15% SNP heritability and ≥ 5% out-of-sample prediction 481

accuracy [8]. Our focus is on selecting a group of phenotypes for which there is sufficient power to 482

observe differences among approaches. We split the sample into training and testing sets for each 483

phenotype, selecting 15,000 individuals that are unrelated (SNP marker relatedness < 0.05) to the 484

training individuals to use as a testing set. This provides an independent sample of data with which 485

to access prediction accuracy. We restrict our prediction analyses to this subset as predicting across 486

other biobank data introduces issues of phenotypic concordance, minor allele frequency and linkage 487

disequilibrium differences. In fact, our objective is to simply benchmark methods on as uniform a 488

dataset as we can. As stated, combining inference across different human groups, requires a model 489

that is capable of accounting for differences in minor allele frequency and linkage disequilibrium 490

patterns across human populations and, while our algorithmic framework can provide the basis 491

of new methods for this problem, the focus here is on benchmarking in the simpler linear model 492

setting. Samples sizes and traits used in our analyses are given in Table S1. 493

Statistical analysis in the UK Biobank 494

gVAMP model parametes for WGS 495

We apply gVAMP to the WGS data to analyse human height using the largest computational 496

instance currently available on the DNAnexus platform, employing 128 cores and 1921.4 GB total 497

memory. Efficient C++ gVAMP implementation allows for parallel computing, utilizing OpenMP 498

and MPI libraries. Here, we split the memory requirements and computational workload between 499

2 OpenMP threads and 64 MPI workers. For the prior initialization, we set an initial number of 500

22 non-zero mixtures, we let the variance of those mixtures follow a geometric progression to a 501

maximum of 1/N , with N the sample size, and we let the probabilities follow a geometric progression 502

with factor 1/2. The prior probability 1 − λ of SNP markers being assigned to the 0 mixture is 503

initialized to 99.5%. The SNP marker effect sizes are initialised with 0. Based on the experiments 504

in the UK Biobank imputed dataset, in WGS we set the initial damping factor ρ to 0.1, and adjust 505

it to 0.05 for iteration 4 onward, stabilizing the algorithm. We then report the results corresponding 506
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to the iterate having the largest number of SE associations. We also note that, after the first few 507

iterations, the number of SE associations is typically rather stable (see Figure S4). 508

gVAMP model parameters for imputed SNP data 509

We run gVAMP on the 13 UK Biobank phenotypes on the full 8,430,446 SNP set, and on the 510

2,174,071 and 882,727 LD clumped SNP set. We find that setting the damping factor ρ to 0.1 511

performs well for all the 13 outcomes in the UK Biobank that we have considered. For the prior 512

initialization, we set an initial number of 22 non-zero mixtures, we let the variance of those mixtures 513

follow a geometric progression to a maximum of 1/N , with N the sample size, and we let the 514

probabilities follow a geometric progression with factor 1/2. The SNP marker effect sizes are 515

initialised with 0. This configuration works well for all phenotypes. We also note that our inference 516

of the number of mixtures, their probabilities, their variances and the SNP marker effects is not 517

dependent upon specific starting parameters for the analyses of the 2,174,071 and 882,727 SNP 518

datasets, and the algorithm is rather stable for a range of initialization choices. Similarly, the 519

algorithm is stable for different choices of the damping ρ, as long as said value is not too large. 520

Generally, appropriate starting parameters are not known in advance and this is why we learn 521

them from the data within the EM steps of our algorithm. However, it is known that EM can be 522

sensitive to the starting values given and, thus, we recommend initialising a series of models at 523

different values to check that this is not the case (similar to starting multiple Monte Carlo Markov 524

chains in standard Bayesian methods). The feasibility of this recommendation is guaranteed by the 525

significant speed-up of our algorithm compared to existing approaches, see Supplementary Note 1, 526

Figure S5c. 527

For the sparsity parameter, we consider either initializing it to 50, 000 included signals (λ0 = 528

50, 000/P ), or to further increase the probability of SNP markers being assigned to the 0 mixture 529

to 97%, which results in a sparser initialised model. We also consider inflating the variances to a 530

maximum of 10/N to allow for an underlying effect size distribution with longer tails. It is trivial to 531

initialise a series of models and to monitor the training R2, SNP heritability, and residual variance 532

estimated within each iteration over the first 10 iterations. Given the same data, gVAMP yields 533

estimates that more closely match GMRM when convergence in the training R2, SNP heritability, 534

residual variance, and out-of-sample test R2 are smoothly monotonic within around 10-40 iterations. 535

Following this, training R2, SNP heritability, residual variance, and out-of-sample test R2 may then 536

begin to slightly decrease as the number of iterations becomes large. Thus, as a stopping criterion 537

for the 2,174,071 and 882,727 SNP datasets, we choose the iteration that maximizes the training 538

R2, and in practice it is easy to optimise the algorithm to the data problem at hand. 539

We highlight the iterative nature of our method. Thus, improved computational speed and 540

more rapid convergence is achieved by providing better starting values for the SNP marker effects. 541

Specifically, when moving from 2,174,071 to 8,430,446 SNPs, only columns with correlation R2 ≥ 0.8 542

are being added back into the data. Thus, for the 8,430,446 SNP set, we initialise the model with 543

the converged SNP marker and prior estimates obtained from the 2,174,071 SNP runs, setting to 0 544

the missing markers. Furthermore, we lower the value of the damping factor ρ, with typical values 545

being 0.05 and 0.01. We experiment both with using the noise precision from the initial 2,174,071 546

SNP runs and with setting it to 2. We then choose the model that leads to a smoothly monotonic 547
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curve in the training R2. We observe that SNP heritability, residual variance, and out-of-sample 548

test R2 are also smoothly monotonic within 25 iterations. Thus, as a stopping criterion for the 549

8,430,446 SNP dataset, we choose the estimates obtained after 25 iterations for all the 13 traits. We 550

follow the same process when extending the analyses to include the WES rare burden gene scores. 551

Polygenic risk scores and SNP heritability 552

gVAMP produces SNP effect estimates that can be directly used to create polygenic risk scores. 553

The estimated effect sizes are on the scale of normalised SNP values, i.e., (Xj − µXj )/SD(Xj), with 554

µXj the column mean and SD(Xj) the standard deviation, and thus SNPs in the out-of-sample 555

prediction data must also be normalized. We provide an option within the gVAMP software to 556

do phenotypic prediction, returning the adjusted prediction R2 value when given input data of a 557

PLINK file and a corresponding file of phenotypic values. gVAMP estimates the SNP heritability 558

as the phenotypic variance (equal to 1 due to normalization) minus 1 divided by the estimate of the 559

noise precision, i.e., h2
SNP = 1 − 1/γϵ. 560

We compare gVAMP to a MCMC sampler approach (GMRM) with a similar prior (the same 561

number of starting mixtures) as presented in [8]. We select this comparison as the MCMC sampler 562

was demonstrated to exhibit the highest genomic prediction accuracy up to date [8]. We run GMRM 563

for 2000 iterations, taking the last 1800 iterations as the posterior. We calculate the posterior means 564

for the SNP effects and the posterior inclusion probabilities of the SNPs belonging to the non-zero 565

mixture group. GMRM estimates the SNP heritability in each iteration by sampling from an inverse 566

χ2 distribution using the sum of the squared regression coefficient estimates. 567

We also compare gVAMP to the summary statistics prediction methods LDpred2 [6] and 568

SBayesR [7] run on the 2,174,071 SNP dataset. In fact, we find that running on the full 8,430,446 569

SNP set is either computationally infeasible or entirely unstable, and we note that neither approach 570

has been applied to data of this scale to date. For SBayesR, following the recommendation on 571

the software webpage (https://cnsgenomics.com/software/gctb/#SummaryBayesianAlphabet), 572

after splitting the genomic data per chromosomes, we calculate the so-called shrunk LD matrix, 573

which use the method proposed by [36] to shrink the off-diagonal entries of the sample LD matrix 574

toward zero based on a provided genetic map. We make use of all the default values: --genmap-n 575

183, --ne 11400 and --shrunk-cutoff 10−5. Following that, we run the SBayesR software using 576

summary statistics generated via the REGENIE software (see “Mixed linear association testing” 577

below) by grouping several chromosomes in one run. Namely, we run the inference jointly on 578

the following groups of chromosomes: {1}, {2}, {3}, {4}, {5, 6}, {7, 8}, {9, 10, 11}, {12, 13, 14} and 579

{15, 16, 17, 18, 19, 20, 21, 22}. This allows to have locally joint inference, while keeping the memory 580

requirements reasonable. All the traits except for Blood cholesterol (CHOL) and Heel bone mineral 581

density T-score (BMD) give non-negative R2; CHOL and BMD are then re-run using the option to 582

remove SNPs based on their GWAS p-values (threshold set to 0.4) and the option to filter SNPs 583

based on LD R-Squared (threshold set to 0.64). For more details on why one would take such an 584

approach, one can check https://cnsgenomics.com/software/gctb/#FAQ. As the obtained test 585

R2 values are still similar, as a final remedy, we run standard linear regression over the per-group 586

predictors obtained from SBayesR on the training dataset. Following that, using the learned 587

parameters, we make a linear combination of the per-group predictors in the test dataset to obtain 588
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the prediction accuracy given in the table. 589

For LDpred2, following the software recommendations, we create per-chromosome banded LD 590

matrices with the window size of 3cM. After the analysis of the genome-wide run of LDpred2, we 591

establish that the chains do not converge even after tuning the shrinkage factor, disabling the sign 592

jump option and disabling the usage of MLE (use_MLE=FALSE option). For this reason, we opt to 593

run LDpred2 per chromosome, in which case the chains converge successfully. Twenty chains with 594

different proportion of causal markers are run in the LDpred2 method, for each of the chromosomes 595

independently. Then, a standard linear regression involving predictors from different chromosomes 596

is performed to account for correlations between SNPs on different chromosomes, which achieved 597

better test R2 than the predictors obtained by stacking chromosomal predictors. In summary, for 598

both LDpred2 and SBayesR we have tried to find the optimal solution to produce the highest 599

possible out-of-sample prediction accuracy, contacting the study authors, if required, for guidance. 600

Mixed linear model association testing 601

We conduct mixed linear model association testing using a leave-one-chromosome-out (LOCO) 602

estimation approach on the 8,430,446 and 2,174,071 imputed SNP markers. LOCO association 603

testing approaches have become the field standard and they are two-stage: a subset of markers 604

is selected for the first stage to create genetic predictors; then, statistical testing is conducted 605

in the second stage for all markers one-at-a-time. We consider REGENIE [1], as it is a recent 606

commonly applied approach. We also compare to GMRM [8], a Bayesian linear mixture of regressions 607

model that has been shown to outperform REGENIE for LOCO testing. For the first stage of 608

LOCO, REGENIE is given 887,060 markers to create the LOCO genetic predictors, even if it is 609

recommended to use 0.5 million genetic markers. We compare the number of significant loci obtained 610

from REGENIE to those obtained if one were to replace the LOCO predictors with: (i) those 611

obtained from GMRM using the LD pruned sets of 2,174,071 and 887,060 markers; and (ii) those 612

obtained from gVAMP at all 8,430,446 markers and the LD pruned sets of 2,174,071 and 887,060 613

markers. We note that obtaining predictors from GMRM at all 8,430,446 markers is computationally 614

infeasible, as using the LD pruned set of 2,174,071 markers already takes GMRM several days. In 615

contrast, gVAMP is able to use all 8,430,446 markers and still be faster than GMRM with the LD 616

pruned set of 2,174,071 markers. 617

LOCO testing does not control for linkage disequilibrium within a chromosome. Thus, to 618

facilitate a simple, fair comparison across methods, we clump the LOCO results obtained with 619

the following PLINK commands: --clump-kb 5000 --clump-r2 0.01 --clump-p1 0.00000005. 620

Therefore, within 5Mb windows of the DNA, we calculate the number of independent associations 621

(squared correlation ≤ 0.01) identified by each approach that pass the genome-wide significance 622

testing threshold of 5 · 10−8. As LOCO can only detect regions of the DNA associated with 623

the phenotype and not specific SNPs, given that it does not control for the surrounding linkage 624

disequilibrium, a comparison of the number of uncorrelated genome-wide significance findings is 625

conservative. 626
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gVAMP SE association testing 627

We provide an alternative approach to association testing, which we call state evolution p-value 628

testing (SE association testing), where the effects of each marker can be estimated conditional on all 629

other genetic variants genome-wide. Relying on the properties of the EM-VAMP estimator, whose 630

noise is asymptotically Gaussian due to the Onsager correction [12], we have r1,t ≈ β + N (0, γ−1
1,t I), 631

where β is the ground-truth value of the underlying genetic effects vector. More precisely, one can 632

show that 1
N ∥r1,t − β − N (0, γ−1

1,t I)∥ → 0, as N, P → ∞, with the ratio N/P being fixed. Therefore, 633

for each marker with index j, a one-sided p-value for the hypothesis test H0 : βj = 0 is given by 634

Φ(−|(r1,t)i| · γ
1/2
1,t ), where Φ is the CDF of a standard normal distribution and (r1,t)i denotes the 635

i-th component of the vector r1,t. We conduct this association testing for height in the WGS data 636

and for the full 8,430,446 imputed SNP markers for the empirical UK Biobank analysis of 13 traits, 637

using the estimates of r1,t. We remark that the testing results are generally stable after 20 iterations 638

(Figure S4). To these, we apply a Bonferroni multiple testing correction to give a conservative 639

comparison for presentation, but we note that the estimates made are joint, rather than marginal, 640

and thus FDR control methods may also be an alternative. 641

Data availability 642

This project uses the UK Biobank data under project number 35520. UK Biobank genotypic and 643

phenotypic data is available through a formal request at (http://www.ukbiobank.ac.uk). All 644

summary statistic estimates are released publicly on Dryad: https://doi.org/xx.xxxx/dryad. 645

xxxxxxxxx. 646

Code availability 647

The gVAMP code https://github.com/medical-genomics-group/gVAMP is fully open source. 648

The scripts used to execute the model are available at https://github.com/medical-genomics-group/649

gVAMP. R version 4.2.1 is available at https://www.r-project.org/. PLINK version 1.9 is avail- 650

able at https://www.cog-genomics.org/plink/1.9/. REGENIE is available at https://github. 651

com/rgcgithub/regenie. bignspr 1.12.4 package that contains LDpred2 is available at https:// 652

privefl.github.io/bigsnpr/index.html. SBayesR is available at https://cnsgenomics.com/ 653

software/gctb/#Overview. 654
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Supplementary information

Joint modelling of whole genome sequence data for human height
via approximate message passing
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Supplementary Tables

Table S1. The 13 UK Biobank traits used within the study. Phenotypic names and their
codes used in the study. The sample size, N , gives the number of individuals with training data measures.

Phenotype Code Sample size, N

Blood: cholesterol CHOL 395,025
Blood: eosinophill count EOSI 401,452

Blood: glycated haemoglobin HbA1c 394,912
Blood: High density lipoprotein HDL 360,286

Blood: mean corpuscular haemoglobin MCH 402,201
Blood mean corpuscular volume MCV 402,202

Red blood cell count RBC 402,204
Body mass index BMI 413,595

Diastolic blood pressure DBP 377,358
Forced vital capacity FVC 376,724

Heel bone mineral density BMD 231,693
Standing height HT 414,055

Systolic blood pressure SBP 377,347
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Supplementary Figures

Figure S1. Whole genome sequence variants discovered at two different significance
thresholds that are not discovered in imputed SNP data can have multiple neighbouring
imputed SNPs that are discovered as significantly height associated. For each whole genome
sequence variant discovered as height associated at p ≤ 5 · 10−8 or p ≤ 5 · 10−7, we determine the number of
imputed SNPs determined to be significantly height associated at the same significance level, for a base-pair
distance of either 5kb, 50kb, 100kb, or 250kb from the focal WGS variant. We observe that most WGS
findings have 0 neighboring findings in close proximity, but can have multiple neighboring significant imputed
variant findings at distance.
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Figure S2. The variance attributable to gene burden scores calculated from whole
exome sequence data (y-axis) shows no relationship to the variance attributable to
DNA variants within and around the gene (x-axis) for either imputed SNPs or whole
genome sequence variants.
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Figure S3. SNP heritability estimation of GMRM versus gVAMP with different
numbers of SNP markers across 13 trait in the UK Biobank. Comparison of the proportion of
phenotypic variation attributable to 2,174,071 autosomal SNP genetic markers (SNP heritability) estimated
by GMRM (x-axis) to the SNP heritability estimated by gVAMP (y-axis) at either the same 2,174,071 SNPs
(red) or 8,430,446 SNP markers (blue). The slope of the lines shows a 1-to-1 relationship of gVAMP to
GMRM, but with an average of 3.4% lower estimate for gVAMP at 2.17M SNPs. Analysing 8.4M SNPs with
gVAMP increases the heritability estimate over GMRM by 3.9%, which is consistent with an increase in
phenotypic variance captured by the full imputed sequence data, as opposed to a selected subset of SNP
markers. The dashed grey line gives y = x.
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Figure S4. Convergence of SE p-value testing with increasing number of iterations
for 13 UK Biobank traits. AMP theory provides a joint association testing framework, capable of
estimating the effects of each genomic position conditional on all other SNP markers. We show this SE
p-value testing approach for each iteration of our iterative algorithm, where we calculate the number of
genome-wide fine-mapped associations for 13 UK Biobank traits at a p-value threshold of less than 5 · 10−8

for all 8,430,446 SNP markers.
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Supplementary Note 1

Simulation study methods

To support our empirical analyses we conduct a simulation study using the 8,430,446 UK Biobank
genetic marker data with 414,055 individuals. We randomly sample 40,000 causal variants genome-
wide to give a highly polygenic genetic basis. To these, we allocate effect sizes from a Gaussian
with mean zero and variance 0.5/40000, where 0.5 is the proportion of variance attributable to the
SNP markers (SNP heritability). Multiplying the simulated SNP effects by normalized values of the
40,000 causal markers, gives a vector of genetic values of length N = 414055 with variance 0.5. To
this we add a vector of noise, drawn from a Gaussian with mean zero and variance 0.5, to produce a
response variable of length N , with zero mean and unit variance.

We analyse the simulated response variable with gVAMP, using either 8,430,446, 2,174,071 or
887,060 SNP markers with identical initialisation to that described in the Methods for the empirical
UK Biobank study. We also analyse the data with GMRM using 2,174,071 or 887,060 SNP markers
(as this completes within reasonable compute time and resource use), running for 2,500 iterations
with 500 iteration burn in. Finally, we run REGENIE using 887,060 SNP markers for the first stage
and 8,430,446 SNP markers for the second stage LOCO testing.

We begin by comparing the LOCO association testing results obtained by REGENIE to those
obtained by replacing the REGENIE predictors with predictors obtained from GMRM using
2,174,071 markers and gVAMP using either 8,430,446, 2,174,071 or 887,060 SNP markers within the
gVAMP software.

To facilitate a simple, fair comparison of the true positive rate (TPR) and false discovery rate
(FDR) across methods, we clump the LOCO results obtained with the following PLINK commands:
--clump-kb 5000 --clump-r2 0.01 --clump-p1 0.00000005. Therefore, within 5Mb windows of
the DNA, we calculate the number of independent associations (squared correlation ≤ 0.01) identified
by each approach that pass the genome-wide significance testing threshold of 5 · 10−8. This is the
same procedure performed for MLMA testing (see “Mixed linear model association testing” in the
Methods). For each identified genome-wide significant association, we then ask if it is correlated
(squared correlation ≥ 0.01) to a causal variant: if so, we classify it as a true positive; otherwise, we
classify it as a false positive. The true positive rate is calculated as the number of true positives
divided by the total number of simulated causal variants, and it is also known as the recall, or
sensitivity, reflecting the power of a statistical test. The false discovery rate is calculated as the
number of false positives divided by the number of genome-wide significant associations, and it is a
measure of the proportion of discoveries that are false. As genome-wide association studies aim to
detect regions of the DNA associated with the phenotype, the definition of a false discovery as the
detection of a variant at genome-wide significance when that variant has squared correlation ≤ 0.01
with a causal variant within 5Mb is a very conservative one. We present these results in Figure S5a.

We then compare the out-of-sample prediction accuracy and the SNP heritability estimated by
GMRM with that obtained by gVAMP, following the same procedures outlined in the Methods
for the empirical UK Biobank analysis. For the out-of-sample prediction, we use a hold-out set of
15,000 individuals that are unrelated (SNP marker relatedness < 0.05) to the training individuals.
We present these results in Figure S5b.
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We conduct five simulation replicates, as we find that this is sufficient to contrast methods, with
GMRM and gVAMP giving very consistent estimates across replicates, and REGENIE being highly
variable. We compare the run time for the first stage analysis of REGENIE to the total run times
of gVAMP and GMRM across different marker sets using 50 CPU from a single AMD compute
node. We present these run time results in Figure S5c.

Additionally, we compare the SE p-value testing results of gVAMP on the 8,430,446 and 2,174,071
SNP datasets to the posterior inclusion probabilities calculated for each SNP using GMRM. The
theoretical expectation is that both methods should yield broadly similar results, but in practice
p-value association testing and posterior inclusion probability testing are not easily comparable.
Thus, we simply present TPR and FDR calculations for these models at different significance
thresholds in Figure S8. A true positive is defined as an SNP that (i) has a test statistic passing
the threshold, and (ii) is a true causal variant. This reflects power to localise marker effects to the
single-locus level. A false discovery is classified as a SNP that (i) has a test statistic passing the
threshold, and (ii) is not the exact true causal variant. Our objective here is to simply explore
the power and FDR of the SE testing across a range of thresholds. We avoid prescribing specific
significance thresholds, leaving this as a choice for practitioners.

To support our findings further, we repeat our simulation again but we randomly select 40,000
causal variants from the 887,060 markers. Our objective is to compare REGENIE and gVAMP in the
scenario where the causal variants are present in the data used to create the predictors for the first
step of LOCO. This ensures that our findings are not just driven by only having SNPs correlated
with the causal variants in step 1. Additionally, as well as simulating the causal marker effects from
a Gaussian, we also simulate them from a mixture of Gaussians. Specifically, we simulate effect
sizes for the 40,000 causal variants from a mixture of three Gaussian distributions with probabilities
1/2, 1/3, 1/6 and variances 0.5/40,000, 5/40,000, 50/40,000. Multiplying the simulated SNP effects
by the normalized values of the 40,000 causal markers gives a vector of genetic values of length
N = 414, 055 with variance 0.5. To this we add a vector of noise, drawn from a Gaussian with mean
zero and variance 0.5, to produce a response variable of length N , with zero mean and unit variance.
We conduct five simulation replicates for the Gaussian effect size setting and five for the mixture
setting, because we again find that this is sufficient to contrast methods, with gVAMP giving very
consistent estimates across replicates and REGENIE being highly variable. We present these results
to compare the TPR and FDR of REGENIE with that of gVAMP in Figure S6.

Finally, we repeat our simulation once more but we randomly select 40,000 causal variants from
the 2,174,071 SNP data. Our objective is to compare GMRM and gVAMP to empirically assess
the Bayes optimality of gVAMP when applied to genomic data. We simulate the causal marker
effects from both a Gaussian and a mixture of Gaussians, and compare SNP heritability of the two
methods under these different effect size distributions. We present these results in Figure S7.

Simulation study results

We start by discussing the LOCO testing results for the setting in which 40,000 SNP markers are
randomly selected from the full set of 8,430,446 SNPs. We find that gVAMP performs similarly to
the individual-level Bayesian approach of GMRM in true positive rate (TPR), whilst controlling
the false discovery rate (FDR) below the 5% level (Figure S5a). Both approaches outperform the
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Figure S5. Simulation study of association testing power and run time using UK
Biobank genotype data. We consider 8,430,446 SNP markers, randomly select 40,000 as causal and use
these to simulate a phenotype. Standard leave-one-chromosome-out (LOCO) association testing approaches
are two-stage, with a subset of markers selected for the first stage. Here we select either all markers, 2,174,071
markers, or 887,060 markers for the first stage and then use all markers for the second stage LOCO testing.
In (a), we apply gVAMP, REGENIE, or GMRM to these data and calculate the true positive rate (TPR)
and the false discovery rate (FDR). In the first stage, we set REGENIE to utilize only 887,060 markers,
despite only 500,000 being recommended (see https://rgcgithub.github.io/regenie/faq/), GMRM up
to 2,174,071 markers, whilst gVAMP can utilise the full range. The FDR is well controlled at 5% or less
for both gVAMP and GMRM, but not for REGENIE. Power (TPR) is higher for gVAMP and GMRM as
compared to REGENIE. For (b), we compare out-of-sample prediction accuracy for polygenic risk scores
created at different sets of markers from gVAMP (8,430,446 and 2,174,071) and GMRM (2,174,071). (c) gives
the run time in hours for the first stage analysis of gVAMP, REGENIE, and GMRM, across different marker
sets using 50 CPU from a single compute node. gVAMP takes 2/3 of the time of a single-trait analysis in
REGENIE using 887,060 markers, remains faster then REGENIE using 2,174,071 markers, and is the only
approach capable of analysing 8,430,446 markers jointly within 24 hours.

commonly used REGENIE software in both TPR and FDR, which does not always control the FDR
below 5% (Figure S5a). We repeat our simulation by selecting 40,000 causal SNPs from the 887,060
marker subset so that the causal variants are within the set used for the first step of all methods,
finding that the results remain the same across two different effect size distributions (Figure S6).
Thus, power and accuracy are higher for gVAMP and GMRM as compared to REGENIE for two
reasons: (i) given the same data, the models show improved performance (Figure S6), and (ii)
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Figure S6. Comparison of gVAMP and REGENIE association testing within identical
data. True positive rate (TPR) and false discovery rate (FDR) for leave-one-chromosome-out (LOCO)
testing where 887,060 markers are used for both the first step of REGENIE and for gVAMP and where all
simulated causal variants are contained within this set. LOCO testing is then conducted over the full set of
8,430,446 SNP markers. “S1” refers to causal variant effects simulated from a Gaussian distribution; “S2”
refers to causal variant effects whose distribution is a mixture of Gaussians. We perform five simulation
replicates.

more SNP markers can be utilised to create the predictors, with the benefit of controlling for all
genome-wide effects rather than a subset, which in turn controls the FDR (Figure S5a and S6).

For MLMA, association testing power (TPR) depends upon the sample size and the out-of-
sample prediction accuracy of the predictors obtained from the first step [37]. For gVAMP to have
Bayes-optimal empirical performance, polygenic risk score prediction accuracy should match that of
GMRM. When simulating data by selecting 40,000 causal markers from 8,430,446 imputed SNP
markers and then only using a subset of 2,174,071 markers for analysis, we find that gVAMP loses
only 0.5% to 1% accuracy over GMRM. However, we highlight that, by analysing all 8,430,446
imputed SNP markers, gVAMP improves over GMRM (Figure S5b). We note that analysing all
8,430,446 SNPs is computationally infeasible for GMRM.

A key feature of gVAMP is its computational efficiency, which allows for joint processing of
the full set of 8,430,446 markers. gVAMP completes in 2/3 of the time of REGENIE given the
same data and compute resources, and it is dramatically faster (12.5× speed-up) than the MCMC
sampling algorithm GMRM; even with 8,430,446 imputed SNP markers, the model yields estimates
in under a day (Figure S5c).

Polygenic risk score prediction accuracy depends upon h2
SNP , the number of true underlying

causal variants and the sample size [38], which are fixed in our simulation. When simulating
effects over 40,000 SNPs randomly selected from 8,430,446 markers and then using only a subset of
2,174,071 markers to estimate h2

SNP , both gVAMP and GMRM give estimates that are lower than
the simulated value, which is expected as all causal variants are not given to the model (Figure
S7). gVAMP gives correct estimates when given the full 8,430,446 markers and when we repeat
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Figure S7. SNP heritability estimation of GMRM versus gVAMP with different
numbers of SNP markers in the simulation. Comparison of the proportion of phenotypic variation
attributable to either 8,430,446 or a subset of 2,174,071 autosomal single nucleotide polymorphism (SNP)
genetic markers (SNP heritability) estimated by GMRM and gVAMP. We consider three simulation scenarios:
“8M” represents the scenario of 40,000 causal SNP markers randomly selected from 8,430,446 total SNPs with
effects sampled from a Gaussian distribution and total SNP heritability of 0.5; “S1” represents the scenario
of 40,000 causal SNPs randomly selected from 2,174,071 total SNPs with effects sampled from a Gaussian
distribution and total SNP heritability of 0.5; and finally “S2” represents the scenario of 40,000 causal SNPs
randomly selected from 2,174,071 total SNPs with effects sampled from a mixture of Gaussians and total
SNP heritability of 0.5. Points give the posterior means for GMRM and the convergence of gVAMP from
five simulation replicates. Analysing 8,430,446 SNPs with gVAMP increases the heritability estimate over
GMRM. This is consistent with an increase in phenotypic variance captured by the full imputed sequence
data, as opposed to analyzing a selected subset of SNP markers, in which case gVAMP estimates are lower
than those obtained from GMRM. Given the same data containing all the causal variants, the algorithms
perform similarly irrespective of the underlying effect size distributions (“S1” and “S2”).

the simulations selecting 40,000 causal variants from 2,174,071 markers, gVAMP and GMRM give
identical inference under both Gaussian and a mixture of Gaussian effect size distributions (Figure
S7).

gVAMP provides an alternative approach to association testing where the effects of each marker
can be estimated conditional on all other genetic variants genome-wide (see “gVAMP SE association
testing” in the Methods). The expectation is that SE association testing should yield broadly
similar results to posterior inclusion probability testing from Bayesian fine-mapping approaches.
Fine-mapping approaches have been developed to overcome the issue that individual-level Bayesian
methods cannot be applied to full sequence data and have similar priors to GMRM, thus we restrict
our comparison to this method. GMRM has previously been shown to outperform other Bayesian
fine-mapping approaches [39].

Comparing gVAMP to GMRM at 2,174,071 SNP markers, as GMRM cannot analyse more than
this within reasonable time frames, we find that, for significance thresholds of p ≤ 0.005, the FDR
is controlled at ≤ 5%, with greater power than GMRM posterior inclusion probabilities (Figure
S8). For 8,430,446 imputed SNP markers, stronger linkage disequilibrium limits the assignment of
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Figure S8. Whole genome fine-mapping of gVAMP in a simulation study using UK
Biobank genotype data. True positive rate (TPR) and false discovery rate (FDR) of SE association
testing at 2,174,071 and 8,430,446 markers for different significance thresholds. We then compare this to the
TPR and FDR of genome-wide fine-mapping using the posterior inclusion probability of each SNP generated
by GMRM. For significance thresholds of p ≤ 0.005, the FDR is controlled at ≤ 5%, with greater power than
GMRM posterior inclusion probabilities.

significance to the single-marker resolution, reducing the TPR, but FDR improves as effects are
resolved to the correct single-marker level when all causal variants are within the data (Figure S8),
supporting our main results. Thus, our algorithm facilitates individual-level (and summary-level)
Bayesian methods to be applied to all variants jointly at scale, so that genetic variant effects can be
localised to single-locus resolution conditional on all other genetic variants within a cohort.
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Supplementary Note 2

Onsager correction calculation

In order to ensure Gaussianity of residuals, gVAMP calculates the so-called Onsager correction based
on (5). For such calculation, the derivative of the denoising function ft defined in (3) is required.
Let us denote the numerator and denominator of (4) with Num(r1) and Den(r1), respectively. Then,

∂Num(r1)
∂r1

= λt ·
L∑

l=1
πt,l ·

σ2
t,l

(γ−1
1,t + σ2

t,l)3/2 · EXP(σ2
t,l) ·

[
1 − r2

1 ·
(σ2

t,∗ − σ2
t,l)

(γ−1
1,t + σ2

t,l)(γ
−1
1,t + σ2

t,∗)

]
,

∂Den(r1)
∂r1

= −r1 ·
[
λt ·

L∑
l=1

πt,l

(γ−1
1,t + σ2

t,l)
·

σ2
t,∗ − σ2

t,l

(γ−1
1,t + σ2

t,l)(γ
−1
1,t + σ2

t,∗)
· EXP(σ2

t,l)

+ (1 − λt) ·
γ

3/2
1,t · σ2

t,∗

(γ−1
1,t + σ2

t,∗)
· EXP(0)

]
.

Thus, the Onsager correction reads

∂

∂r1

(Num(r1)
Den(r1)

)
=

∂
∂r1

Num(r1)
Den(r1) −

Num(r1) · ∂
∂r1

Den(r1)
(Den(r1))2 .

Conjugate gradient algorithm for solving linear systems

Algorithm 2 Conjugate gradient method for solving a symmetric linear system Ax = b.
1: Input: Initial estimate of the solution x0, initial residual r0 = b, initial search direction p0 = r0,

linear system matrix A, right-hand side vector b, stopping error threshold ε > 0.
2: for n = 1, 2, 3, . . . do
3: αn = rT

n−1rn−1

pT
n−1Apn−1

4: xn = xn−1 + αnpn−1
5: rn = rn−1 − αnApn−1

6: βn = rT
n rn

rT
n−1rn−1

7: pn = rn + βnpn−1
8: If n ≥ 1 and ||xn − xn−1||2/||xn||2 < ε, then break
9: end for

10: return xn
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