Joint modelling of whole genome sequence data for human height via approximate message passing

Al Depope^{1,*}, Jakub Bajzik¹, Marco Mondelli^{1,†,*}, Matthew R. Robinson^{1,†,*}

1 Institute of Science and Technology Austria, Klosterneuburg, Austria.

*****corresponding authors **†** indicates joint supervision

Abstract

Human height is a model for the genetic analysis of complex traits, and recent studies suggest the presence of thousands of common genetic variant associations and hundreds of low-frequency/rare variants. However, it has not yet been possible to fine-map the genetic basis of height, since all variant effects have not been modelled jointly leaving correlations unaccounted for. To address this issue, we develop a new algorithmic paradigm based on approximate message passing, *gVAMP*, to directly fine-map whole-genome sequence (WGS) variants and gene burden scores, conditional on all other measured DNA variation genome-wide. We find that the genetic architecture of height inferred from WGS data differs from that inferred from imputed single nucleotide polymorphism (SNP) variants: common variant associations from imputed SNP data are allocated to WGS variants of lower frequency, and there is a stronger relationship of effect size and variant frequency. Thus, even fine-mapped imputed variants are systematically mis-assigned and without the joint analysis of WGS data it remains premature, if not unfounded, to make statements regarding the number of independent associations and their properties. We validate gVAMP on various datasets across UK Biobank traits where it outperforms widely used methods for polygenic risk score prediction and association testing, offering a scalable foundation towards analyzing hundreds of millions of variables measured on millions of people.

Keywords: whole genome regression; joint association testing; fine-mapping; polygenic risk scores; approximate message passing

Introduction

Efficient utilization of large-scale biobank data is crucial for inferring the genetic basis of disease $\frac{2}{3}$ and predicting health outcomes from DNA. The common statistical approach of single-marker or 3 single-gene burden score regression $[1-4]$ $[1-4]$, gives marginal associations that do not account for linkage $\overline{4}$ disequilibrium (LD), and in whole genome sequence (WGS) data, even weak associations that are $\overline{5}$ physically distant from causal variants will be discovered as significant at scale. While fine-mapping 6 aims to identify causal variants, current methods focus only on genome-wide significant loci within ⁷ one region at a time [\[5\]](#page-25-2), in isolation from the rest of the genome, resulting in miscalibration and a compromise of power. Thus, we currently lack accurate statistical models to jointly estimate the ⁹ effect of each locus, conditional on all other genetic variants. Applying whole genome regression 10 (WGR), where the effect of each variant is estimated conditional on all others, has the potential to ¹¹ resolve these issues and reveal the underlying genetic architecture of complex traits. ¹²

Here, we focus on the highly heritable polygenic phenotype of human height, and develop a 13 new framework, gVAMP, which fits tens of millions of WGS variants jointly at scale. Applying 14 gVAMP to WGS data on hundreds of thousands of UK Biobank participants, we find a stronger ¹⁵ relationship of effect size and variant frequency, due to common variant associations in imputed 16 SNP data being allocated to WGS variants of lower frequency. These insights could not be obtained 17 from existing statistical approaches, and we additionally validate gVAMP on a number of datasets $_{18}$ by benchmarking against the state of the art: gVAMP outperforms widely used summary statistic ¹⁹ methods such as LDpred2 [\[6\]](#page-25-3) and SBayesR [\[7\]](#page-25-4) for polygenic risk score prediction, and an individual- ²⁰ level REGENIE [\[1\]](#page-25-0) method for association testing. Additionally, we show that its performance ²¹ matches that of MCMC sampling schemes $[8]$ but with a dramatic speed-up in time (analysing $8.4M$ 22 SNPs jointly in under day as opposed to weeks). This lays the foundations for a wider range of 23 analyses in large WGS datasets that are entirely infeasible for other methods. ²⁴

Results ²⁵

Overview of the approach

Our focus is on the simple idea of joint association testing controlling for local and long-range 27 LD: we estimate the significance of each variant, conditional on all other observed DNA locations 28 genome-wide. To do this, we consider a general form of whole-genome Bayesian linear regression, ²⁹ common to genome-wide association studies (GWAS) [\[7,](#page-25-4)8], estimating the effects vector $\beta \in \mathbb{R}^P$ 30 from a vector of phenotype measurements $\mathbf{y} = (y_1, \ldots, y_N) \in \mathbb{R}^N$ given by $\qquad \qquad$ 31

$$
y_i = \langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \epsilon_i, \quad \text{for } i \in \{1, \dots, N\}. \tag{1}
$$

Here, x_i is the row of the normalized genotype matrix X corresponding to the *i*-th individual, 32 $\langle x_i, \beta \rangle = x_i^T \beta$ denotes the inner product, and $\epsilon = (\epsilon_1, \ldots, \epsilon_N)$ is an unknown noise vector with 33 multivariate normal distribution $\mathcal{N}(0, \gamma_{\epsilon}^{-1} \cdot \mathbf{I})$ and unknown noise precision γ_{ϵ}^{-1} . To allow for a 34 range of genetic effects, we select the prior on β to be of an adaptive spike-and-slab form: $\frac{35}{100}$

$$
\beta_i \sim (1 - \lambda) \cdot \delta_0(\cdot) + \lambda \cdot \sum_{i=1}^L \pi_i \cdot \mathcal{N}(\cdot, 0, \sigma_i^2), \quad \text{for } i \in \{1, \dots, P\}.
$$
 (2)

Here, $\lambda \in [0,1]$ is the DNA variant inclusion rate, L is the unknown number of Gaussian mixtures, ∞ $(\pi_i)_{i=1}^L$ denote the mixture probabilities and $(\sigma_i^2)_{i=1}^L$ the variances for the slab component. 37

Current association testing $[1-4]$ $[1-4]$, fine-mapping $[5]$ and polygenic risk score methods $[8, 9]$ $[8, 9]$ are 38 all based on forms of Equations [\(1\)](#page-1-0) and [\(2\)](#page-2-0), with parameters estimated by restricted maximum $\frac{39}{20}$ likelihood (REML), Markov Chain Monte Carlo (MCMC), expectation maximisation (EM), or ⁴⁰ variational inference (VI). REML and MCMC are computationally intensive and slow; while EM and ⁴¹ VI are faster, they trade speed for accuracy with few theoretical guarantees. Furthermore, current 42 software implementations of these algorithms limit either the number of markers or individuals. $_{43}$ Mixed linear model association (MLMA) approaches are restricted to using less than one million $\frac{44}{40}$ SNPs to control for the polygenic background $[1, 2]$ $[1, 2]$, resulting in a loss of power $[8]$ and the potential $\overline{45}$ for inadequate control for fine-scale confounding factors [\[10\]](#page-25-8). Polygenic risk score algorithms are ⁴⁶ limited to a few million SNPs, and lose power by modelling only blocks of genetic markers $[6, 7]$ $[6, 7]$. Likewise, fine-mapping methods are generally limited to focal segments of the DNA [\[5\]](#page-25-2), and they 48 are unable to fit all genome-wide DNA variants together. Thus, no existing approach can apply 49 the statistical model of Equations [\(1\)](#page-1-0) and [\(2\)](#page-2-0) to jointly estimate the effects vector β and the 50 genome-wide significance of each element in WGS data. ⁵¹

We overcome this issue by developing a new approach for GWAS inference, dubbed *genomic* 52 *Vector Approximate Message Passing* (gVAMP). Approximate Message Passing (AMP) [\[11](#page-25-9)[–13\]](#page-25-10) refers 53 to a family of iterative algorithms with several attractive properties: (i) AMP allows the usage of a wide range of Bayesian priors; *(ii)* the AMP performance for high-dimensional data can be precisely 55 characterized by a simple recursion called state evolution $[14]$; *(iii)* using state evolution, joint $\overline{56}$ association test statistics can be obtained [\[15\]](#page-26-0); and *(iv)* AMP achieves Bayes-optimal performance ⁵⁷ in several settings $[15-17]$ $[15-17]$. However, we find that existing AMP algorithms proposed for various $\overline{}$ applications $[18-21]$ $[18-21]$ cannot be transferred to biobank analyses as: *(i)* they are entirely infeasible at $\overline{59}$ scale, requiring expensive singular value decompositions; and (ii) they give diverging estimates of 60 the signal in either simulated genomic data or the UK Biobank data. To address the problem, we 61 combine a number of principled approaches to produce an Expectation Propagation method tailored 62 to whole genome regression as described in the Methods (Algorithm [1\)](#page-12-0). gVAMP approximates 63 the posterior $\mathbb{E}[\beta \mid X, y]$, providing joint effect size estimates and statistical testing via state 64 evolution (see "gVAMP SE association testing" in the Methods). Additionally, we learn all unknown 65 parameters in an adaptive Bayes expectation-maximisation (EM) framework [\[22,](#page-26-4) [23\]](#page-26-5), which avoids 66 expensive cross-validation and yields biologically informative inference of the phenotypic variance 67 attributable to the genomic data (SNP heritability, h_{SNP}^2) allowing for the first full characterisation 68 of the genetic architecture of human complex traits in WGS data. ⁶⁹

bioRxiv preprint doi: [https://doi.org/10.1101/2023.09.14.557703;](https://doi.org/10.1101/2023.09.14.557703) this version posted July 4, 2024. The copyright holder for this preprint

Figure 1. Joint association plot of 8.4 million imputed SNPs and 17 million WGS for human height in 415,000 UK Biobank participants. AMP theory provides a joint association testing framework, capable of estimating the effects of each genomic position conditional on all other SNP markers. In the panel "Imputed SNPs", we combine 8,430,446 autosomal imputed SNP markers with 17,852 whole exome sequencing gene burden scores, estimating the effects jointly within the gVAMP SE testing framework. In the panel "WGS" we combine 16,854,878 whole genome sequence variants with 17,852 whole exome sequencing gene burden scores, again estimating the effects jointly within the gVAMP SE testing framework.

The genetic architecture of human height $\frac{1}{20}$

When analysing 415,000 UK Biobank individuals, we find that the genetic architecture of human τ_1 height inferred from 16,854,878 WGS variants differs to that inferred from 8,430,446 imputed SNP $\frac{1}{2}$ markers (Figure [1\)](#page-3-0). gVAMP estimates the proportion of phenotypic variance in human height τ_3 attributable to WGS data as 0.652, as compared to 0.63 for the imputed SNP data, comparable to a ⁷⁴ previously published REML estimate in a different WGS dataset [\[25\]](#page-26-6) and family-based estimates [\[26\]](#page-26-7). ⁷⁵ This confirms that additional phenotypic variation is attributable to variants in WGS data that are τ_6 missing in imputed SNP data. Surprisingly, despite this increase in attributable height variation, π when gVAMP maps effects to single-locus positions across the DNA in WGS data, we find 526 s genome-wide significant effects as compared to 930 in the imputed data (Figure [1\)](#page-3-0). This decrease in τ_9 genome-wide significant loci occurs because the WGS analysis attributes height variation to DNA \bullet variants of lower minor allele frequency (MAF) , as compared to the imputed SNP data analysis, ϵ_{1} giving a reduction in association testing power (Figure [2\)](#page-4-0).

For WGS variants significant at different thresholds, we determine whether the same variant, or 83 a variant within a given number of base pairs (distance, x-axis), is identified in the imputed SNP 84 data at the same significance threshold. We find little overlap in the locations of the SNPs that we ⁸⁵

Figure 2. The genetic architecture of human height inferred from 16,854,878 whole genome sequence variants differs to that inferred from 8,430,446 imputed SNP markers in the UK Biobank. *(a)* For each whole genome sequence (WGS) variant discovered at different genome-wide significance thresholds, we determine whether we also identify a variant within a given number of base pairs (distance, x-axis) in the imputed SNP data at the same threshold. The overlap is calculated as the proportion of WGS variants of either *>* 1% or *<* 1% minor allele frequency (MAF) that are discovered at a given threshold within a certain base pair distance. *(b)* For each whole genome sequence (WGS) variant discovered at different genome-wide significance thresholds, we determine whether a variant was identified within the latest height GWAS study [\[24\]](#page-26-8) at the same threshold for a given number of base pairs (distance, x-axis), with the overlap calculated as in *(a)*. We select the GWAS marginal summary statistics for European individuals including (incl. UKB), or excluding (excl. UKB) the UK Biobank (for analysis details see [\[24\]](#page-26-8)). (c) For each WGS variant at genome-wide significance level $p \leq 5 \cdot 10^{-6}$, we determine the imputed SNP at *p* ≤ 5 · 10⁻⁶ with the closest MAF and show a histogram of these frequency differences for WGS variants of different frequencies. *(d)* For all WGS variants and imputed SNPs, we calculate the proportional contribution to phenotypic variance across different MAF groups.

map to single-locus resolution across the two datasets within 1kb (a small proportion maps to the ∞ same location), but substantial overlap within 100kb either side of the WGS findings (Figure [2a](#page-4-0)). ϵ Thus, similar DNA regions are identified, but the effects are assigned to different variant locations. 88 When we determine whether the same variant, or a variant within a given number of base pairs ⁸⁹ (distance, x-axis), was identified in the most recent GWAS study of human height [\[24\]](#page-26-8), we again ⁹⁰ find little overlap in the locations of the SNPs that we map to single-locus resolution across the two 91 datasets within 1kb, but substantial overlap within 100kb either side of the WGS findings (Figure 92 [2b](#page-4-0)). This demonstrates that our results are predominantly replicated in large-scale GWAS studies, 93 but again that in WGS data effects are localised to different DNA variants. ⁹⁴

When we then examine the properties of the WGS variants we identify, we find that WGS variants 95 of MAF $\leq 16\%$ are generally always mis-mapped in the imputed data to variants of higher frequency 96 (Figure [2c](#page-4-0)). For each WGS variant discovered at genome-wide significance level $p \leq 5 \cdot 10^{-6}$, we 97 determine whether there is an imputed SNP at $p \leq 5 \cdot 10^{-6}$ within 250kb, and show a histogram of 98 the imputed variant with closest MAF, separating the discovered WGS variants by their frequency: 99 we find that, while some variants map to the same location across the two datasets (frequency 100 difference of 0), the majority do not and are assigned in the imputed data to variants of higher $\frac{101}{200}$ frequency (Figure [2c](#page-4-0)). We also find that each WGS variant not discovered in the imputed data $_{102}$ can have multiple neighbouring SNPs of various MAF distribution with the same significance level 103

(Figure [S1\)](#page-30-0). As a consequence, the phenotypic variance attributable to different MAF groups differs ¹⁰⁴ in WGS as compared to imputed SNP data, with less variance attributable to common SNPs in ¹⁰⁵ WGS data (Figure [2d](#page-4-0)). This shows that for human height, many discoveries in imputed SNP data 106 are attributable to variants of lower frequency in WGS data. Thus, fine-mapped imputed variants $_{107}$ can be systematically mis-assigned, without a full joint analysis of WGS data.

Despite the expectation that fine-mapped variants would show elevated marginal test statistics 109 in standard GWAS association testing, we find that many genome-wide significant height-associated 110 rare variants discovered in both the WGS and imputed data were not found in previous UK Biobank 111 analyses in Open Targets including: rs116467226, an intronic variant by TPRG1; rs766919361, an 112 intronic variant by FGF18; rs141168133, an intergenic variant 19kb from ID4; rs150556786, an 113 upstream gene variant for GRM4; rs574843917, a non-coding transcript exon variant in GPR21; ¹¹⁴ rs532230290, an intergenic variant 42kb from SCYL1; rs543038394, intronic in OVOL1; rs1247942912, ¹¹⁵ a non-coding transcript exon variant in AC024257.3; rs577630729, a regulatory region variant for ¹¹⁶ ISG20; and rs140846043, a non-coding transcript exon variant of MIRLET7BHG. 10 out of our top ¹¹⁷ 38 height-associated WGS variants of $\leq 1\%$ MAF were not previously discovered, and only become 118 height-associated when conditioning on the entire polygenic background captured by WGS data 119 within our analysis.

We can directly determine the relationship between effect size and minor allele frequency, 121 which again differs between WGS and imputed SNP data (Figure [3a](#page-6-0)). For variants of significance 122 $p \leq 5 \cdot 10^{-4}$, the power relationship of effect size and locus variance, denoted as α in the literature [\[27\]](#page-26-9), 123 is $\alpha = -0.318$, 95% CI = 0.022, *p*-value $\leq 2 \cdot 10^{-16}$ for imputed SNPs, which is consistent with 124 previous estimates. However, this is much lower for WGS variants: $\alpha = -0.566, 95\%$ CI = 0.004, 125 *p*-value $\leq 2 \cdot 10^{-16}$. Our model allows for different types of DNA observations to be combined and 126 when we include 17,852 WES gene burden scores into the analysis, we have (i) $\alpha = -0.826, 95\%$ CI 127 $= 0.083$, *p*-value $\leq 2 \cdot 10^{-16}$ for WES burden scores fit alongside WGS variants; and *(ii)* $\alpha = -0.891$, 128 95% CI = 0.042, *p*-value $\leq 2 \cdot 10^{-16}$ for WES burden scores fit alongside imputed SNPs. Thus, it 129 appears likely that the relationship between effect size and MAF for human height is stronger than ¹³⁰ previously inferred for imputed SNP data. 131

We highlight the benefits of joint estimation to explore genetic architecture, where controlling 132 for LD allows effects to be summed over different categories, facilitating gene/annotation analyses. ¹³³ We find a general concordance of the estimated effect sizes of the 17,852 WES gene burden scores 134 when fit alongside either imputed or WGS data, for most but not all genes (Figure [3b](#page-6-0)). We sum 135 up the joint effects to determine the variation in height attributable to each gene, and again find ¹³⁶ general concordance across markers annotated to each of the 17,852 genes, conditional on all other ¹³⁷ markers, across the imputed SNP and WGS analysis (Figure [3c](#page-6-0)). We see little relationship between 138 the variance attributable to the burden score of a given gene and the SNPs annotated to the gene 139 (Figure [S2\)](#page-31-0), with some notable exceptions: ACAN, ADAMTS17, ADAMTS10, and LCORL. The ¹⁴⁰ top genes, where gVAMP attributes $\geq 0.04\%$ of height variation in addition to those listed above are $\frac{141}{141}$ EFEMP1, ZBTB38, and ZFAT. All the 38 genome-wide significant gene burden scores are for genes ¹⁴² that have previous GWAS height associations linked to them in Open Targets, but our analysis ¹⁴³ suggests that the effect is attributable to a rare protein coding variant rather than the common ¹⁴⁴ variants suggested by current genome-wide association studies.

made available under [aCC-BY 4.0 International license.](http://creativecommons.org/licenses/by/4.0/) (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is bioRxiv preprint doi: [https://doi.org/10.1101/2023.09.14.557703;](https://doi.org/10.1101/2023.09.14.557703) this version posted July 4, 2024. The copyright holder for this preprint

Figure 3. The relationship between effect size and minor allele frequency for human height inferred from whole genome sequence data differs to that inferred from imputed SNP variants in the UK Biobank. *(a)* For different genome-wide significance thresholds, we plot the relationship between joint effect size and minor allele frequency (MAF) for imputed SNPs, whole genome sequence (WGS) variants and whole exome sequence (WES) burden scores fit alongside either imputed SNPs or WGS data. *(b)* Across 17,852 WES gene burden scores, we find general concordance of the estimated effect sizes when fit alongside either imputed or WGS data, for most but not all genes, with squared correlation 0.532. *(c)* Likewise, we also find general concordance of the phenotypic variance attributable to markers annotated to each of the 17,852 genes, when fit conditional on either imputed or WGS variants, with squared correlation 0.494. *(d)* Finally, we show similar patterns of enrichment when annotating markers to functional annotations in either the proportion of variance attributable to each group (labelled "variance"), or in the average effect size relative to the genome-wide average effect size (labelled "effect") from joint estimation of either imputed or WGS data.

Additionally, across annotations, we find that the phenotypic variance attributable to different ¹⁴⁶ DNA regions is higher for intergenic and intronic variants (Figure [3d](#page-6-0)). However, when adjusting 147 for the number of SNPs contained by each category by using the average effect size of the group ¹⁴⁸ relative to the average effect size genome-wide, we find that exonic variants that are nonsynonymous, ¹⁴⁹ splicing and stop-gain have the largest average effects of the WGS variants included within our 150

model (Figure [3d](#page-6-0)). Taken together, joint association testing of all WGS variants resolves many ¹⁵¹ previously discovered height-associated DNA regions to rare DNA variants where exonic variants ¹⁵² have large effect sizes, insights that cannot be provided by other GWAS approaches at a scale of 153 17M DNA variants. 154

Validation and benchmarking of gVAMP

Table 1. Polygenic risk score prediction accuracy *R*² **for** 13 **different traits from statistical models trained in the UK Biobank data and tested in a UK Biobank hold-out set.** Training data sample size and trait codes are given in Table [S1](#page-29-0) for each trait. The sample size of the hold-out test set is 15*,* 000 for all phenotypes. LDpred2 and SBayesR give estimates obtained from the LDpred2 and SBayesR software respectively, using summary statistic data of 8,430,446 SNPs obtained from the REGENIE software. GMRM denotes estimates obtained from a Bayesian mixture model at 2,174,071 SNP markers ("GMRM 2M"). gVAMP denotes estimates obtained from an adaptive EM Bayesian mixture model within a vector approximate message passing (VAMP) framework, using either 887,060 ("gVAMP 880k"), 2,174,071 ("gVAMP 2M"), or 8,430,446 SNP markers ("gVAMP 8M").

As gVAMP is the only algorithm that scales to tens of millions of WGS variants, we can only 156 validate and benchmark gVAMP against state-of-the-art approaches in a number of alternative ¹⁵⁷ datasets. We find that *(i)* gVAMP outperforms summary statistic approaches $[6, 7]$ $[6, 7]$ for polygenic 158 risk score prediction, *(ii)* it outperforms REGENIE [\[1\]](#page-25-0) for mixed-linear model association testing, 159 and *(iii)* it has similar performance to MCMC approaches [\[8\]](#page-25-5), but in a fraction of the compute time, 160 which allows analyses at far larger scale that then result in improved performance (Figure [4\)](#page-8-0).

Specifically, we compare the prediction accuracy of gVAMP to the widely used summary statistic 162 methods LDpred2 [\[6\]](#page-25-3) and SBayesR [\[7\]](#page-25-4), and to the individual-level method GMRM [\[8\]](#page-25-5) for imputed ¹⁶³ SNP data in the UK Biobank across 13 traits (training data sample size and trait codes given in ¹⁶⁴ Table [S1\)](#page-29-0). gVAMP outperforms all methods for most phenotypes and, in comparison to published 165 estimates, we obtain the highest out-of-sample prediction accuracy yet reported to date for most ¹⁶⁶ traits. Specifically, for human height, we obtain an accuracy of 45.7% , which is a 97.8% relative 167 increase over LDpred2 (Table [1](#page-7-0) and Figure [4\)](#page-8-0) and higher than the accuracy obtained from the latest 168 height GWAS study of 3.5M people of 44.7% [\[24\]](#page-26-8), despite our sample size of only 414,055. However, 169 we caution that modelling WGS data does not improve the out-of-sample prediction obtained as 170

Figure 4. Validating gVAMP through polygenic risk score accuracy and association testing benchmarks in the UK Biobank within imputed SNP data. *(a)* Relative prediction accuracy of gVAMP in a hold-out set of the UK Biobank across 13 traits as compared to other approaches. *(b)* Relative number of leave-one-chromosome-out (LOCO) testing of gVAMP across 13 UK Biobank traits as compared to other approaches at 8,430,446 markers. *(c)* Number of genome-wide fine-mapped associations obtained via gVAMP SE association testing for 13 UK Biobank traits at a *p*-value threshold of less than $5 \cdot 10^{-8}$ for all 8,430,446 SNP markers.

compared to the 8.4M imputed SNP results for human height, and this is again likely because of ¹⁷¹ the reduction in the MAF of the markers included within the WGS model.

Generally, gVAMP performs similarly to GMRM, an MCMC sampling algorithm, improving over 173

Table 2. Genome-wide significant associations for 13 **UK Biobank traits from GMRM, gVAMP and REGENIE at 8,430,446 genetic variants.** REGENIE denotes results obtained from leave-one-chromosome-out (LOCO) testing using the REGENIE software, with 882,727 SNP markers used for step 1 and 8,430,446 markers used for the LOCO testing of step 2. GMRM refers to LOCO testing at 8,430,446 SNPs, using a Bayesian MCMC mixture model in step 1, with either 882,727 ("GMRM 880k") or 2,174,071 SNP markers ("GMRM 2M"). gVAMP refers to LOCO testing at 8,430,446 SNPs, using the framework presented here, where in step 1 either 882,727 ("gVAMP 880k"), 2,174,071 ("gVAMP 2M"), or 8,430,446 SNP markers ("gVAMP 8M") were used. We also present leave-one-out ("gVAMP 8M LOO", see Methods) and state-evolution (SE) *p*-value testing for 8,430,446 SNP markers ("gVAMP 8M SE", see Methods). For LOCO testing, the values give the number of genome-wide significant linkage disequilibrium independent associations selected based upon a *p*-value threshold of less than 5 · 10−⁸ and *R*² between SNPs in a 5 Mb genomic segment of less than 1%. For LOO and SE testing, values give the number of genome-wide significant associations selected based upon a *p*-value threshold of less than $5 \cdot 10^{-8}$.

it when analysing the full set of 8,430,446 imputed SNPs (Table [1](#page-7-0) and Figure [4\)](#page-8-0). gVAMP estimates ¹⁷⁴ the h_{SNP}^2 of each of the 13 traits at an average of 3.4% less than GMRM when using 2,174,071 SNP 175 markers, but at an average of 3.9% greater than GMRM when using 8,430,446 SNP markers. This ¹⁷⁶ implies that more of the phenotypic variance is captured by the SNPs when the full imputed SNP $_{177}$ data are used (Figure [S3\)](#page-32-0). We note that GMRM already takes several days to analyze 2,174,071 178 SNPs and would take many weeks to analyze 8,430,446 SNPs, making it entirely infeasible to run at 179 that scale. In contrast, gVAMP yields estimates on 8,430,446 SNPs in under a day (Supplementary ¹⁸⁰ Note 1, Figure [S5c](#page-36-0)).

Second, we highlight that gVAMP can also be used for standard leave-one-chromosome-out 182 (LOCO) statistical testing. We compare gVAMP to REGENIE and to GMRM for association testing ¹⁸³ of the 13 traits within a MLMA framework. gVAMP performs similarly in LOCO testing conducted ¹⁸⁴ using a predictor from GMRM, with the use of the full 8,430,446 imputed SNP markers generally 185 improving performance (Table [2](#page-9-0) and Figure [4b](#page-8-0)). REGENIE yields far fewer associations than ¹⁸⁶ either GMRM or gVAMP for all traits (Table [2](#page-9-0) and Figure [4b](#page-8-0)), consistent with simulation study 187 results presented in Supplementary Note 1. Using the gVAMP SE association testing framework, ¹⁸⁸ we find hundreds of marker associations for each trait that can be localised to the single locus 189 level, conditional on all other SNPs genome-wide (Table [2,](#page-9-0) Figure [4c](#page-8-0)), with the obvious caveat that 190 these results are for imputed SNP data and re-analysis of WGS data may yield different results as ¹⁹¹ we show above for height. For all 13 traits, we find that the SE association estimates we obtain $_{192}$ converge in number and location after iteration 20 (Figure [S4\)](#page-33-0).

In addition, we conduct a series of simulation studies showing that gVAMP is the only approach ¹⁹⁴ to generate genetic predictors and association test statistics in a single step, without additional ¹⁹⁵ computations, with accuracy similar to individual-level MCMC methods achieved in a fraction of ¹⁹⁶ the compute time (Supplementary Note 1). As compared to REGENIE, gVAMP completes in 2*/*3 of ¹⁹⁷ the time given the same data and compute resources, and it is dramatically faster $(12.5 \times \text{speed-up})$ 198 than GMRM (Supplementary Note 1, Figure [S5c](#page-36-0)).

Discussion

Our results reveal that a different genetic architecture for human height is inferred in WGS data, ²⁰¹ as compared to imputed SNP data, which shows that fine-mapping results can be miscalibrated 202 by missing rare variants. Although large sample sizes of WGS data will be needed to pinpoint the ²⁰³ variants responsible for the heritability of traits, our results show that the prioritization of relevant ²⁰⁴ genes and gene sets is feasible at smaller sample sizes in imputed data. We highlight that gVAMP ²⁰⁵ is not restricted to the analysis of WGS data, and it also provides a general approach to obtain ²⁰⁶ genetic predictors and MLMA association test statistics in a single step, with accuracy similar to ²⁰⁷ individual-level MCMC methods, but in a fraction of the compute time. We demonstrate this both ²⁰⁸ in an extensive simulation study and in the analysis of 13 UK Biobank traits. Importantly, we 209 provide a different association testing approach where the effects of each locus or burden score ²¹⁰ can be estimated conditional on all other DNA variation genome-wide. This allows associations to ²¹¹ be localised to the single-locus, or single-gene level, refining associations by testing each of them ²¹² against a full genetic background of millions of DNA variants. ²¹³

There are a number of remaining limitations. Our results suggest that the detection and accurate 214 estimation of the effects of height-associated variants is expected to be difficult even with millions ²¹⁵ of WGS samples. There are a very large number of rare variants within the human population ²¹⁶ that are missing from our WGS analysis of 16,854,878 variants, and we believe it is quite likely ²¹⁷ that the true underlying genetic architecture of human height is even rarer than we present here. ²¹⁸ Two solutions could be to *(i)* apply gVAMP region-by-region, or *(ii)* make slight modifications in ²¹⁹ the implementation, so that gVAMP streams data, at the cost of increased run time. Additionally, ²²⁰ while our approach can be applied within any sub-grouping of data (by age, genetic sex, ethnicity, 221 etc.), this is not within the scope of the present work. Combining inference across different groups 222 is of great importance [\[28\]](#page-26-10), and previous work suggests that better modelling within a single large $_{223}$ biobank can facilitate improved association testing in other global biobanks [\[29\]](#page-26-11). Here, while our ²²⁴ approach can be used in the same way, maximising association and prediction across the human ²²⁵ population requires a model that is capable of accounting for differences in the design matrix (minor ²²⁶ allele frequency and linkage disequilibrium patterns) across different datasets. Our ongoing work ²²⁷ now aims at expanding the gVAMP framework to make inference across a diverse range of human 228 groups, to model different outcome distributions (binary outcomes, time-to-event, count data, etc.), ²²⁹ to allow for different effect size relationships across allele frequency and LD groups, to model ²³⁰ multiple outcomes jointly, and to do all of this using summary statistic as well as individual-level ²³¹ data across different biobanks. This is key to obtaining the sample sizes that are likely required to 232 fully explore the genetic basis of complex traits.

In summary, gVAMP is a different way to create genetic predictors and to conduct association ²³⁴ testing. With increasing sample sizes reducing standard errors, a vast number of genomic regions ²³⁵ are being identified as significantly associated with trait outcomes by one-SNP-at-a-time association ²³⁶ testing. Such large numbers of findings will make it increasingly difficult to determine the relative ²³⁷ importance of a given mutation, especially in whole genome sequence data with dense, highly ²³⁸ correlated variants. Thus, it is crucial to develop statistical approaches fitting all variants jointly ²³⁹ and asking whether, given the LD structure of the data, there is evidence for an effect at each locus, ²⁴⁰ conditional on all others.

Methods ²⁴²

gVAMP algorithm ²⁴³

Approximate message passing (AMP) was originally proposed for linear regression [\[11,](#page-25-9) [14,](#page-25-11) [30\]](#page-27-0) ²⁴⁴ assuming a Gaussian design matrix *X*. To accommodate a wider class of structured design matrices, ²⁴⁵ vector approximate message passing (VAMP) was introduced in [\[12\]](#page-25-12). The performance of VAMP ²⁴⁶ can be precisely characterized via a deterministic, low-dimensional *state evolution* recursion, for any ²⁴⁷ right-orthogonally invariant design matrix. We recall that a matrix is right-orthogonally invariant if ²⁴⁸ its right singular vectors are distributed according to the Haar measure, i.e., they are uniform in ²⁴⁹ the group of orthogonal matrices. 250

gVAMP extends EM-VAMP, introduced in [\[12,](#page-25-12)[22,](#page-26-4)[23\]](#page-26-5), in which the prior parameters are adaptively ²⁵¹ learnt from the data via EM, and it is an iterative procedure consisting of two steps: (i) denoising, 252 and *(ii)* linear minimum mean square error estimation (LMMSE). The denoising step accounts for 253 the prior structure given a noisy estimate of the signal β , while the LMMSE step utilizes phenotype 254 values to further refine the estimate by accounting for the LD structure of the data. ²⁵⁵

A key feature of the algorithm is the so called *Onsager correction*: this is added to ensure the ²⁵⁶ asymptotic normality of the noise corrupting the estimates of β at every iteration. Here, in contrast 257 to MCMC or other iterative approaches, the normality is guaranteed under mild assumptions on the 258 normalized genotype matrix. This property allows a precise performance analysis via state evolution 255 and, consequently, the optimization of the method.

In particular, the quantity $\gamma_{1,t}$ in line 7 of Algorithm [1](#page-12-0) is the state evolution parameter tracking 261 the error incurred by $r_{1,t}$ in estimating β at iteration *t*. The state evolution result gives that $r_{1,t}$ is 262 asymptotically Gaussian, i.e., for sufficiently large *N* and *P*, $r_{1,t}$ is approximately distributed as 263 $\mathcal{N}(\beta,\gamma_{1,t}^{-1}\bm{I}).$ Here, β represents the signal to be estimated, with the prior learned via EM steps at 264 iteration *t*:

$$
\beta_i \sim (1 - \lambda_t) \cdot \delta_0(\cdot) + \lambda_t \cdot \sum_{l=1}^L \pi_{t,l} \cdot \mathcal{N}(\cdot, 0, \sigma_{t,l}^2), \quad \forall \ i = 1, \dots, P.
$$

Compared to Equation [\(2\)](#page-2-0), the subscript *t* in λ_t , $\pi_{t,l}$, $\sigma_{t,l}$ indicates that these parameters change 266 through iterations, as they are adaptively learned by the algorithm. Similarly, $r_{2,t}$ is approximately 267 distributed as $\mathcal{N}(\beta, \gamma_{2,t}^{-1}\mathbf{I})$. The Gaussianity of $r_{1,t}, r_{2,t}$ is enforced by the presence of the Onsager 268 coefficients $\alpha_{1,t}$ and $\alpha_{2,t}$, see lines 17 and 22 of Algorithm [1,](#page-12-0) respectively. We also note that $\alpha_{1,t}$ 269

Algorithm 1 gVAMP

1: **Input:** preprocessed normalized genotype matrix $\mathbf{X} \in \mathbb{R}^{N \times P}$, max number of iterations *N*_{it}, initial estimate of effect sizes $r_{1,0} = \mathbf{0}_P \in \mathbb{R}^P$, initial estimate of effect sizes precision $\gamma_{1,0} = 10^{-6} > 0$, initial estimate of noise precision $\gamma_{\epsilon,0} = 2$, initial set of parameters defining the prior distribution $\Theta_0 = \{\lambda, (\pi_i^{(0)})\}$ $(\sigma_i^{(0)})_{i=1}^L,(\sigma_i^{(0)})$ $\binom{10}{i}\left(\frac{L}{i=1}\right)$, max number of variance auto-tuning steps $N_{\text{var_tune}} = 5 \in \mathbb{N}$, threshold for stopping criterion $\varepsilon = 10^{-4} > 0$, damping factor $\rho \in (0, 1)$. 2: **for** $t = 0, 1, ..., N_{it}$ **do** 3: **Denoising step** 4: **for** $k = 0, 1, \ldots, N_{var$ _{tune} **do** $\hat{\beta}_{1,t} = \mathbb{E}[\beta | \boldsymbol{r}_{1,t} = \bar{\beta + N}(0, \gamma_{1,t}^{-1} \boldsymbol{I}), \gamma_{1,t}, \Theta_t]$ 6: **if** $t > 0$ **then** 7: Variance auto-tuning step of estimation error for β in the denoising step, called $\gamma_{1,t}$ 8: EM update of the prior distribution parameters Θ, called Θ*^t* $9: \qquad \quad \textbf{if} \,\, |\gamma_{1,t} - \gamma_{1,t}^{(\text{previous})}| < 10^{-3} \,\, \textbf{then}$ 10: **break** 11: **end if** 12: **end if** 13: **end for** 14: **if** *t* ≥ 0 **then** 15: $\hat{\beta}_{1,t} = \rho \cdot \hat{\beta}_{1,t} + (1 - \rho) \cdot \hat{\beta}_{1,t-1}$ 16: **end if** 17: $\alpha_{1,t} = \gamma_{1,t} \cdot \langle \text{Var}[\beta | \mathbf{r}_{1,t} = \beta + \mathcal{N}(0, \gamma_{1,t}^{-1} \mathbf{I}), \gamma_{1,t}, \Theta_t] \rangle$ 18: $\gamma_{2,t} = \gamma_{1,t} \cdot (1 - \alpha_{1,t})/\alpha_{1,t}$ 19: $\boldsymbol{r}_{2,t} = (\hat{\boldsymbol{\beta}}_{1,t} - \alpha_{1,t}\boldsymbol{r}_{1,t})/(1-\alpha_{1,t})$ 20: **LMMSE step** $\hat{\boldsymbol{\beta}}_{2,t} = (\gamma_{\epsilon,t}\boldsymbol{X}^T\boldsymbol{X} + \gamma_{2,t}\boldsymbol{I})^{-1}(\gamma_{\epsilon,t}\boldsymbol{X}^T\boldsymbol{y} + \gamma_{2,t}\boldsymbol{r}_{2,t})$ 22: $\alpha_{2,t} = \gamma_{2,t} \cdot \text{Tr}[(\gamma_{\epsilon,t} \bm{X}^T \bm{X} + \gamma_{2,t} \bm{I})^{-1}]/P$ 23: $\gamma_{1,t+1} = \gamma_{2,t} \cdot (1 - \alpha_{2,t})/\alpha_{2,t}$ 24: **if** *t >* 1 **then** 25: Variance auto-tuning step of estimation error for β in the LMMSE step, called $\gamma_{2,t}$ 26: **end if** 27: $\bm{r}_{1,t+1} = (\hat{\beta}_{2,t} - \alpha_{2,t} \bm{r}_{2,t})/(1-\alpha_{2,t})$ 28: EM update of the estimate of γ_{ϵ} , called $\gamma_{\epsilon,t}$ $29: \quad \textbf{if} \,\ t \geq 1 \,\ \text{and} \,\ ||\hat{\boldsymbol{\beta}}_{1,t} - \hat{\boldsymbol{\beta}}_{1,t-1}||_2/||\hat{\boldsymbol{\beta}}_{1,t-1}||_2 < \varepsilon \,\ \textbf{then}$ 30: **break** 31: **end if** 32: **end for** $_{33:}$ \mathbf{return} $\hat{\boldsymbol{\beta}}_{1,t}$

(resp. $\alpha_{2,t}$) is the state evolution parameter linked to the error incurred by $\hat{\beta}_{1,t}$ (resp. $\hat{\beta}_{2,t}$). 270

The vectors $r_{1,t}$, $r_{2,t}$ are obtained after the LMMSE step, and they are further improved via the 271 denoising step, which respectively gives $\hat{\beta}_{1,t}, \hat{\beta}_{2,t}$. In the denoising step, we exploit our estimate of 272 the approximated posterior by computing the conditional expectation of β with respect to $r_{1,t}, r_{2,t}$ 273 in order to minimize the mean square error of the estimated effects. For example, let us focus on ²⁷⁴

the pair $(r_{1,t}, \hat{\beta}_{1,t})$ (analogous considerations hold for $(r_{2,t}, \hat{\beta}_{2,t})$). Then, we have that 275

$$
\hat{\beta}_{1,t} = f_t(\mathbf{r}_{1,t}) = \mathbb{E}[\beta|\mathbf{r}_{1,t} = \beta + \mathcal{N}(0, \gamma_{1,t}^{-1}\mathbf{I}), \lambda_t, \{\pi_{t,l}\}_{l=1}^L, \{\sigma_{t,l}^2\}_{l=1}^L].
$$
\n(3)

Here, $f_t: \mathbb{R} \to \mathbb{R}$ denotes the denoiser at iteration *t* and the notation $f_t(r_{1,t})$ assumes that the 276 denoiser f_t is applied component-wise to elements of $r_{1,t}$. Note that, in line 15 of Algorithm [1,](#page-12-0) we 277 take this approach one step further by performing an additional step of damping, see "Algorithm ²⁷⁸ stability" below. 275

From Bayes theorem, one can calculate the posterior distribution (which here has the form of 280) a spike-and-slab mixture of Gaussians) and obtain its expectation. Hence, by denoting a generic ²⁸¹ component of $r_{1,t}$ as r_1 , it follows that 282

$$
f_t(r_1) = \frac{\lambda_t \cdot \sum_{l=1}^L \pi_{t,l} \cdot \frac{r_1 \cdot \sigma_{t,l}^2}{\gamma_{1,t}^{-1} + \sigma_{t,l}^2} \cdot \mathcal{N}(r_1; 0, \gamma_{1,t}^{-1} + \sigma_{t,l}^2)}{(1 - \lambda_t) \cdot \mathcal{N}(r_1; 0, \gamma_{1,t}^{-1}) + \lambda_t \sum_{l=1}^L \pi_{t,l} \cdot \mathcal{N}(r_1; 0, \gamma_{1,t}^{-1} + \sigma_{t,l}^2)}
$$

$$
= \frac{\lambda_t \cdot \sum_{l=1}^L \pi_{t,l} \cdot \frac{r_1 \cdot \sigma_{t,l}^2}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)^{3/2}} \cdot \text{EXP}(\sigma_{t,l}^2)}{(1 - \lambda_t) \cdot \gamma_1^{1/2} \cdot \text{EXP}(0) + \lambda_t \cdot \sum_{l=1}^L \pi_{t,l} \cdot \frac{1}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)^{1/2}} \cdot \text{EXP}(\sigma_{t,l}^2)},
$$
(4)

where $\mathcal{N}(r_1; 0, \gamma_{1,t}^{-1} + \sigma_{t,l}^2)$ denotes the probability density function of a Gaussian with mean 0 and 283 variance $\gamma_{1,t}^{-1} + \sigma_{t,l}^2$ evaluated at r_1 . Furthermore, we set 284

$$
\text{EXP}(\sigma^2) = \exp\bigg(-\frac{r_1^2}{2} \cdot \frac{\sigma_{t,*}^2 - \sigma^2}{(\gamma_{1,t}^{-1} + \sigma^2)(\gamma_{1,t}^{-1} + \sigma_{t,*}^2)}\bigg),
$$

with $\sigma_{t,*}^2 := \max_l(\sigma_{t,l}^2)$. This form of the denoiser is particularly convenient, as we typically deal with 285 very sparse distributions when estimating genetic associations. We also note that the calculation of ²⁸⁶ the Onsager coefficient in line [1](#page-12-0)7 of Algorithm 1 requires the evaluation of a conditional variance, 287 which is computed as the ratio of the derivative of the denoiser over the error in the estimation of 288 the signal, i.e., 289

$$
\text{Var}[\beta_i|(\mathbf{r}_{1,t})_i = \beta_i + \mathcal{N}(0, \gamma_{1,t}^{-1} \mathbf{I}), \lambda_t, \{\pi_{t,l}\}_{l=1}^L, \{\sigma_{t,l}^2\}_{l=1}^L] = f'_t((\mathbf{r}_{1,t})_i) / \gamma_{1,t}.
$$
\n
$$
(5)
$$

The calculation of the derivative of f_t is detailed in Supplementary Note 2. $_{290}$

If one has access to the singular value decomposition (SVD) of the data matrix \boldsymbol{X} , the periteration complexity is of order $\mathcal{O}(NP)$. However, at biobank scales, performing the SVD is 292 computationally infeasible. Thus, the linear system $(\gamma_{\epsilon,t} \mathbf{X}^T \mathbf{X} + \gamma_{2,t} \mathbf{I})^{-1} (\gamma_{\epsilon,t} \mathbf{X}^T \mathbf{y} + \gamma_{2,t} r_{2,t})$ (see 293 line 21 of Algorithm [1\)](#page-12-0) needs to be solved using an iterative method, in contrast to having an 294 analytic solution in terms of the elements of the singular value decomposition of \boldsymbol{X} . In the next 295 section, we provide details on how we overcome this issue.

Scaling up using warm-start conjugate gradients 297

We approximate the solution of the linear system $(\gamma_{\epsilon,t} \mathbf{X}^T \mathbf{X} + \gamma_{2,t} \mathbf{I})^{-1} (\gamma_{\epsilon,t} \mathbf{X}^T \mathbf{y} + \gamma_{2,t} \mathbf{r}_{2,t})$ with 298 a symmetric and positive-definite matrix via the *conjugate gradient method* (CG), see Algorithm ²⁹⁹

[2](#page-40-0) in Supplementary Note 2, which is included for completeness. If κ is the condition number of ∞ $\gamma_{\epsilon,t} \mathbf{X}^T \mathbf{X} + \gamma_{2,t} \mathbf{I}$, the method requires $\mathcal{O}(\sqrt{\kappa})$ iterations to return a reliable approximation. 301

Additionally, inspired by [\[31\]](#page-27-1), we initialize the CG iteration with an estimate of the signal from $\frac{302}{20}$ the previous iteration of gVAMP. This warm-starting technique leads to a reduced number of CG $_{303}$ steps that need to be performed and, therefore, to a computational speed-up. However, this comes 304 at the expense of potentially introducing spurious correlations between the signal estimate and the ³⁰⁵ Gaussian error from the state evolution. Such spurious correlations may lead to algorithm instability $\frac{306}{200}$ when run for a large number of iterations (also extensively discussed below). This effect is prevented 307 by simply stopping the algorithm as soon as the R^2 measure on the training data or the number of ∞ SE associations starts decreasing. 309

In order to calculate the Onsager correction in the LMMSE step of gVAMP (see line 22 of 310 Algorithm [1\)](#page-12-0), we use the Hutchinson estimator [\[32\]](#page-27-2) to estimate the quantity Tr[$(\gamma_{\epsilon,t}X^TX + \alpha)$ $\gamma_{2,t}I$ ⁻¹]/*P*. We recall that this estimator is unbiased, in the sense that, if *u* has i.i.d. entries equal 312 to -1 and $+1$ with the same probability, then 313

$$
\mathbb{E}[\boldsymbol{u}^T(\gamma_{\epsilon,t}\boldsymbol{X}^T\boldsymbol{X}+\gamma_{2,t}\boldsymbol{I})^{-1}\boldsymbol{u}/P] = \text{Tr}[(\gamma_{\epsilon,t}\boldsymbol{X}^T\boldsymbol{X}+\gamma_{2,t}\boldsymbol{I})^{-1}]/P.
$$

Furthermore, in order to perform an EM update for the noise precision *γ^ϵ* one has to calculate the ³¹⁴ trace of a matrix which is closely connected to the one we have seen in the previous paragraph. ³¹⁵ In order to do so efficiently, i.e., to avoiding solving another large-dimensional linear system, we ³¹⁶ store the inverted vector $(\gamma_{\epsilon,t}\bm{X}^T\bm{X} + \gamma_{2,t}\bm{I})^{-1}\bm{u}$ and reuse it again in the EM update step (see the 317 subparagraph on EM updates). 318

Algorithm stability 319

We find that the application of existing EM-VAMP algorithms to the UK Biobank dataset leads $\frac{320}{20}$ to diverging estimates of the signal. This is due to the fact that the data matrix (the SNP data) 321 might not conform to the properties required in $[12]$, especially that of right-rotational invariance. 322 Furthermore, incorrect estimation of the noise precision in line 28 of Algorithm [1](#page-12-0) may also lead to 323 instability of the algorithm, as previous applications of EM-VAMP generally do not leave many ³²⁴ hyperparameters to estimate. 325

To mitigate these issues, different approaches have been proposed including row or/and column ³²⁶ normalization, damping (i.e., doing convex combinations of new and previous estimates) [\[33\]](#page-27-3), and 327 variance auto-tuning [\[23\]](#page-26-5). In particular, to prevent EM-VAMP from diverging and ensure it follows ³²⁸ its state evolution, we empirically observe that the combination of the following techniques is crucial. ³²⁹

1. We perform *damping* in the space of denoised signals. Thus, line 15 of Algorithm [1](#page-12-0) reads as ³³⁰

$$
\hat{\beta}_{1,t} = \rho \cdot \mathbb{E}[\beta | \bm{r}_{1,t}, \Theta_t] + (1-\rho) \cdot \hat{\beta}_{1,t-1},
$$

in place of $\hat{\beta}_{1,t} = \mathbb{E}[\beta | r_{1,t}, \Theta_t]$. Here, $\rho \in (0,1)$ denotes the damping factor. This ensures that 331 the algorithm is making smaller steps when updating a signal estimate. 332

2. We perform *auto-tuning* of $\gamma_{1,t}$ via the approach from [\[23\]](#page-26-5). Namely, in the auto-tuning step, 333 one refines the estimate of $\gamma_{1,t}$ and the prior distribution of the effect size vector β by jointly 334

re-estimating them. If we denote the previous estimates of $\gamma_{1,t}$ and Θ with $\gamma_{1,t}^{(\text{previous})}$ and 335 $\Theta^{(\text{previous})}$, then this is achieved by setting up an expectation-maximization procedure whose 336 \sum_{337} aim is to maximize

$$
\mathbb{E}\big[\log p(\boldsymbol\beta,\boldsymbol r_{1,t}|\gamma_{1,t},\Theta)|\boldsymbol r_{1,t},\gamma_{1,t}^{(\text{previous})},\Theta^{(\text{previous})}\big]
$$

with respect to $\gamma_{1,t}$ and Θ . 338

3. We *filter* the design matrix for first-degree relatives to reduce the correlation between rows, ³³⁹ which has the additional advantage of avoiding potential confounding of shared-environmental $\frac{340}{2}$ effects among relatives. $\frac{341}{200}$

Estimation of the prior and noise precision via EM 342

The VAMP approach in [\[12\]](#page-25-12) assumes exact knowledge of the prior on the signal β , which deviates 343 from the setting in which genome-wide association studies are performed. Hence, we adaptively ³⁴⁴ learn the signal prior from the data using expectation-maximization (EM) steps, see lines 8 and ³⁴⁵ 28 of Algorithm [1.](#page-12-0) This leverages the variational characterization of EM-VAMP [\[22\]](#page-26-4), and its ³⁴⁶ rigorous theoretical analysis presented in [\[23\]](#page-26-5). In this subsection, we summarize the hyperparameter ³⁴⁷ estimation results derived based upon [\[34\]](#page-27-4) in the context of our model. We find that the final ³⁴⁸ update formulas for our hyperparameter estimates are as follows.

• Sparsity rate
$$
\lambda
$$
: We define $\{\zeta_j\}_{j=1}^P$ as:

$$
\zeta_j := \frac{\lambda_t \cdot \sum_{i=1}^L \pi_{i,t} \cdot \mathcal{N}((\mathbf{r}_{1,t})_j; 0, \sigma_{i,t}^2 + \gamma_{1,t}^{-1})}{\lambda_t \cdot \sum_{i=1}^L \pi_{i,t} \cdot \mathcal{N}((\mathbf{r}_{1,t})_j; 0, \sigma_{i,t}^2 + \gamma_{1,t}^{-1}) + (1 - \lambda_t) \cdot \mathcal{N}((\mathbf{r}_{1,t})_j; 0, \gamma_{1,t}^{-1})}, \quad \forall j = 1, \ldots, P.
$$

The intuition behind $\{\zeta_j\}_{j=1}^P$ is that each ζ_j tells what fraction of posterior probability mass 351 was assigned to the event that it has a non-zero effect. Then, the update formula for the 352 sparsity rate λ_{t+1} reads as λ_{t+2} reads as

$$
\lambda_{t+1} = \frac{1}{P} \sum_{j=1}^{P} \zeta_j.
$$

• Probabilities of mixture components in the slab part $\{\pi_i\}_{i=1}^L$: We define $\{\xi_{j,i}\}_{i=1,j=1}^{L,P}$ as 354

$$
\xi_{j,i} = \frac{\pi_{i,t} \cdot \mathcal{N}((\mathbf{r}_{1,t})_j; 0, \sigma_i^2 + \gamma_{1,t}^{-1})}{\sum_{l=1}^L \cdot \pi_{l,t} \cdot \mathcal{N}((\mathbf{r}_{1,t})_j; 0, \sigma_l^2 + \gamma_{1,t}^{-1})}, \quad \forall i = 1, \ldots, L, \ \forall j = 1, \ldots, P.
$$

The intuition behind $\{\xi_{j,i}\}_{i=1,j=1}^{L,P}$ is that each $\xi_{j,i}$ approximates the posterior probability that 355 a marker *j* belongs to a mixture *i* conditional on the fact that it has non-zero effect. Thus, ³⁵⁶ the update formula for $\pi_{i,t+1}$ reads as $\sigma_{i,t+1}$ reads as

$$
\pi_{i,t+1} = \frac{\sum_{j=1}^{P} \zeta_j \xi_{j,i}}{\sum_{j=1}^{P} \zeta_j}, \quad \forall i = 1, ..., L.
$$

• Variances of mixture components in the slab part $\{\sigma_i^2\}_{i=1}^L$: Using the same notation, the up- \det formula reads as $\frac{359}{2}$

$$
\sigma_{i,t+1}^2 = \frac{\sum_{j=1}^P \zeta_j \cdot \xi_{j,i} \cdot \left[\left(\frac{(r_{1,t})_j \cdot \gamma_{1,t}}{\gamma_{1,t} + \sigma_{i,t}^{-2}} \right)^2 + \frac{1}{\gamma_{1,t} + \sigma_{i,t}^{-2}} \right]}{\sum_{j=1}^P \zeta_j \cdot \xi_{j,i}}, \quad \forall i = 1,\ldots,L.
$$

Here we also introduce a mixture merging step, i.e., if the two mixtures are represented by $_{360}$ variances that are close to each other in relative terms, then we merge those mixtures together. ³⁶¹ Thus, we adaptively learn the mixture number. 362

• Precision of the error γ_{ϵ} : We define $\Sigma_t := (\gamma_{\epsilon,t} X^T X + \gamma_{2,t} I)^{-1}$. Then, the update formula 363 for the estimator of γ_{ϵ} reads as 364

$$
\gamma_{\epsilon,t+1} = \frac{1}{\frac{||\mathbf{y} - \mathbf{X}\hat{\beta}_{2,t}||^2}{N} + \frac{\text{Tr}(\mathbf{X}\mathbf{\Sigma}_t\mathbf{X}^T)}{N}}.
$$

In the formula above, the term $||y - X\hat{\beta}_{2,t}||^2/N$ takes into account the quality of the fit 365 of the model, while the term $\text{Tr}(\boldsymbol{X}\boldsymbol{\Sigma}_t\boldsymbol{X}^T)/N$ prevents overfitting by accounting for the 366 structure of the prior distribution of the effect sizes via the regularization term $\gamma_{2,t}$. We 367 note that the naive evaluation of this term would require an inversion of a matrix of size 368 $P \times P$. We again use the Hutchinson estimator for the trace to approximate this object, i.e., 369 $\text{Tr}(\boldsymbol{X}\boldsymbol{\Sigma}_t\boldsymbol{X}^T) = \text{Tr}(\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\Sigma}_t) \approx \boldsymbol{u}^T(\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\Sigma}_t)\boldsymbol{u}$, where \boldsymbol{u} has i.i.d. entries equal to −1 and +1 370 with the same probability. Furthermore, instead of solving a linear system $\Sigma_t u$ with a newly 371 generated u , we re-use the u sampled when constructing the Onsager coefficient, thus saving 372 the time needed to construct the object $\Sigma_t u$. 373

C++ code optimization 374

Our open-source gVAMP software (<https://github.com/medical-genomics-group/gVAMP>) is ³⁷⁵ implemented in C++, and it incorporates parallelization using the OpenMP and MPI libraries. MPI $_{376}$ parallelization is implemented in a way that the columns of the normalized genotype matrix are $\frac{377}{20}$ approximately equally split between the workers. OpenMP parallelization is done on top of that and ³⁷⁸ used to further boost performance within each worker by simultaneously performing operations such 379 as summations within matrix vector product calculations. Moreover, data streaming is employed ³⁸⁰ using a lookup table, enabling byte-by-byte processing of the genotype matrix stored in PLINK 381 format with entries encoded to a set $\{0, 1, 2\}$: 382

$$
\left(\begin{array}{cc} 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right) \mapsto \left(\begin{array}{c} \text{NaN} & 2 & 0 & 1 \end{array}\right) \tag{383}
$$

The lookup table enables streaming in the data in bytes, where every byte (8 bits) encodes the ³⁸⁴ information of 4 individuals. This reduces the amount of memory needed to load the genotype 385 matrix. In addition, given a suitable computer architecture, our implementation supports SIMD 386 instructions which allow handling four consecutive entries of the genotype matrix simultaneously. 387 To make the comparisons between different methods fair, the results presented in the paper do ³⁸⁸ not assume usage of SIMD instructions. Additionally, we emphasize that all calculations take $\frac{1}{386}$

un-standardized values of the genotype matrix in the form of standard PLINK binary files, but are 390 conducted in a manner that yields the parameter estimates one would obtain if each column of the ³⁹¹ genotype matrix was standardized. $\frac{392}{200}$

UK Biobank data ³⁹³

Participant inclusion 394

UK Biobank has approval from the North-West Multicenter Research Ethics Committee (MREC) 395 [t](https://www.ukbiobank.ac.uk/ethics/)o obtain and disseminate data and samples from the participants ([https://www.ukbiobank.ac.](https://www.ukbiobank.ac.uk/ethics/) ³⁹⁶ [uk/ethics/](https://www.ukbiobank.ac.uk/ethics/)), and these ethical regulations cover the work in this study. Written informed consent 397 was obtained from all participants.

Our objective is to use the UK Biobank to provide proof of principle of our approach and to ³⁹⁹ compare to state-of-the-art methods in applications to biobank data. We first restrict our analysis ⁴⁰⁰ to a sample of European-ancestry UK Biobank individuals to provide a large sample size and ⁴⁰¹ more uniform genetic background with which to compare methods. To infer ancestry, we use both $_{402}$ self-reported ethnic background (UK Biobank field 21000-0), selecting coding 1, and genetic ethnicity $\frac{403}{403}$ (UK Biobank field 22006-0), selecting coding 1. We project the 488,377 genotyped participants ⁴⁰⁴ onto the first two genotypic principal components (PC) calculated from 2,504 individuals of the ⁴⁰⁵ 1,000 Genomes project. Using the obtained PC loadings, we then assign each participant to the ⁴⁰⁶ closest 1,000 Genomes project population, selecting individuals with PC1 projection \leq absolute $_{407}$ value 4 and PC2 projection \leq absolute value 3. We apply this ancestry restriction as we wish to 408 provide the first application of our approach, and to replicate our results, within a sample that ⁴⁰⁹ is as genetically homogeneous as possible. Our approach can be applied within different human ⁴¹⁰ groups (by age, genetic sex, ethnicity, etc.). However, combining inference across different human ⁴¹¹ groups requires a model that is capable of accounting for differences in minor allele frequency and ⁴¹² linkage disequilibrium patterns across human populations. Here, the focus is to first demonstrate $\frac{413}{413}$ that our approach provides an optimal choice for biobank analyses, and ongoing work focuses on ⁴¹⁴ exploring differences in inference across a diverse range of human populations. Secondly, samples $\frac{415}{415}$ are also excluded based on UK Biobank quality control procedures with individuals removed of *(i)* ⁴¹⁶ extreme heterozygosity and missing genotype outliers; *(ii)* a genetically inferred gender that did $_{417}$ not match the self-reported gender; *(iii)* putative sex chromosome aneuploidy; *(iv)* exclusion from $\frac{418}{2}$ kinship inference: (v) withdrawn consent.

Whole genome sequence data 420

We process the population-level WGS variants, recently released on the UK Biobank DNAnexus $_{421}$ platform. We use BCF tools to process thousands of pVCF files storing the chunks of DNA sequences, ⁴²² applying elementary filters on genotype quality $(GQ \le 10)$, local allele depth (smpl_sum LAD < 8), $\frac{423}{2}$ missing genotype (F_MISSING > 0.1), and minor allele frequency (MAF < 0.0001). We select this 424 MAF threshold as it means that on average about 80 people will have a genotype that is non-zero, $_{425}$ which was the lowest frequency for which we felt that there was adequate power in the data to $_{426}$ detect the variants. While we accept that it is quite possible to include additional rare variants, we $\frac{427}{427}$ wished for a conservative threshold that was at least an order of magnitude lower than the threshold $_{428}$

we used for the imputed SNP data described below to facilitate a comparison among the analysis of $_{429}$ μ the different data types. μ 430 μ 430

Simultaneously, we normalize the indels to the most recent reference, removing redundant data ⁴³¹ fields to reduce the size of the files. For all chromosomes separately, we then concatenate all ⁴³² the pre-processed VCF files and convert them into PLINK format. The compute nodes on the ⁴³³ DNAnexus system are quite RAM limited, and it is not possible to analyse the WGS data outside ⁴³⁴ of this system, which restricts the number of variants that can be analysed jointly. To reduce the ⁴³⁵ number of variants to the scale which can be fit in the largest computational instance available on ⁴³⁶ the DNAnexus platform, we rank variants by minor allele frequency and remove the variants in ⁴³⁷ high LD with the most common variants using the PLINK clumping approach, setting a 1000 kb $_{438}$ radius, and R^2 threshold to 0.36. This selects a focal common variant from a group of other common $\frac{439}{4}$ variants with correlation > 0.6 , which serves to capture the common variant signal into groups, $\frac{440}{2}$ whilst keeping all rare variation within the data. Finally, we remove the variants sharing the same $\frac{441}{400}$ base pair position, not keeping any of these duplicates, and merge all the chromosomes into a large ⁴⁴² data instance, including the final 16,854,878 WGS variants. $\frac{443}{443}$

Imputed SNP data 444

We use genotype probabilities from version 3 of the imputed autosomal genotype data provided $_{445}$ by the UK Biobank to hard-call the single nucleotide polymorphism (SNP) genotypes for variants ⁴⁴⁶ with an imputation quality score above 0.3. The hard-call-threshold is 0.1 , setting the genotypes $\frac{447}{40}$ with probability ≤ 0.9 as missing. From the good quality markers (with missingness less than 5% 448 and *p*-value for the Hardy-Weinberg test larger than 10^{-6} , as determined in the set of unrelated $\frac{449}{4}$ Europeans) we select those with MAF \geq 0.002 and rs identifier, in the set of European-ancestry 450 participants, providing a dataset of 9,144,511 SNPs. From this, we took the overlap with the ⁴⁵¹ Estonian Genome Centre data as described in [\[8\]](#page-25-5) to give a final set of 8,430,446 autosomal markers. ⁴⁵²

For our simulation study and UK Biobank analyses described below, we select two subsets of $\frac{453}{453}$ 8,430,446 autosomal markers. We do this by removing markers in very high LD using the "clumping" ⁴⁵⁴ approach of PLINK, where we rank SNPs by minor allele frequency and then select the highest ⁴⁵⁵ MAF SNPs from any set of markers with LD $R^2 \geq 0.8$ within a 1MB window to obtain 2,174,071 456 markers. We then further subset this with LD $R^2 > 0.5$ to obtain 882,727 SNP markers. This 457 results in the selection of two subsets of "tagging variants", with only variants in very high LD $_{458}$ with the tag SNPs removed. This allows us to compare analysis methods that are restricted in the $\frac{459}{459}$ number of SNPs that can be analysed, but still provide them a set of markers that are all correlated $\frac{460}{460}$ with the full set of imputed SNP variants, limiting the loss of association power by ensuring that $_{461}$ the subset is correlated to those SNPs that are removed. 462

Whole exome sequence data burden scores 463

We then combine this data with the UK Biobank whole exome sequence data. The UK Biobank $_{464}$ [f](https://doi.org/10.1101/572347)inal release dataset of population level exome variant calls files is used ([https://doi.org/10.](https://doi.org/10.1101/572347) ⁴⁶⁵ [1101/572347](https://doi.org/10.1101/572347)). Genomic data preparation and aggregation is conducted with custom pipeline (repo) ⁴⁶⁶ on the UK Biobank Research Analysis Platform (RAP) with DXJupyterLab Spark Cluster App ⁴⁶⁷

 $(v. 2.1.1)$. Only biallelic sites and high quality variants are retained according to the following criteria: individual and variant missingness *<* 10%, Hardy-Weinberg Equilibrium *p*-value *>* 10−¹⁵ 469 minimum read coverage depth of 7, at least one sample per site passing the allele balance threshold ⁴⁷⁰ *>* 0*.*15. Genomic variants in canonical, protein coding transcripts (Ensembl VERSION) are ⁴⁷¹ annotated with the Ensembl Variant Effect Predictor (VEP) tool (docker image ensemblorg/ensembl- ⁴⁷² vep:release_110.1). High-confidence (HC) loss-of-function (LoF) variants are identified with the ⁴⁷³ LOFTEE plugin (v1.0.4 GRCh38). For each gene, homozygous or multiple heterozygous individuals 474 for LoF variants have received a score of 2, those with a single heterozygous LoF variant 1, and the $_{475}$ rest 0. We chose to use the WES data to create the burden scores rather than the WGS data as ⁴⁷⁶ existing well-tested pipelines were available.

Phenotypic records 478

Finally, we link these DNA data to the measurements, tests, and electronic health record data ⁴⁷⁹ available in the UK Biobank [\[35\]](#page-27-5) and, for the imputed SNP data, we select 7 blood based biomarkers ⁴⁸⁰ and 6 quantitative measures which show $> 15\%$ SNP heritability and $> 5\%$ out-of-sample prediction $\frac{481}{250}$ accuracy [\[8\]](#page-25-5). Our focus is on selecting a group of phenotypes for which there is sufficient power to ⁴⁸² observe differences among approaches. We split the sample into training and testing sets for each ⁴⁸³ phenotype, selecting 15,000 individuals that are unrelated (SNP marker relatedness *<* 0*.*05) to the ⁴⁸⁴ training individuals to use as a testing set. This provides an independent sample of data with which ⁴⁸⁵ to access prediction accuracy. We restrict our prediction analyses to this subset as predicting across ⁴⁸⁶ other biobank data introduces issues of phenotypic concordance, minor allele frequency and linkage ⁴⁸⁷ disequilibrium differences. In fact, our objective is to simply benchmark methods on as uniform a $_{488}$ dataset as we can. As stated, combining inference across different human groups, requires a model $_{488}$ that is capable of accounting for differences in minor allele frequency and linkage disequilibrium ⁴⁹⁰ patterns across human populations and, while our algorithmic framework can provide the basis ⁴⁹¹ of new methods for this problem, the focus here is on benchmarking in the simpler linear model ⁴⁹² setting. Samples sizes and traits used in our analyses are given in Table [S1.](#page-29-0) $\frac{493}{493}$

Statistical analysis in the UK Biobank ⁴⁹⁴

gVAMP model parametes for WGS

We apply gVAMP to the WGS data to analyse human height using the largest computational 496 instance currently available on the DNAnexus platform, employing 128 cores and 1921.4 GB total ⁴⁹⁷ memory. Efficient $C++$ gVAMP implementation allows for parallel computing, utilizing OpenMP $_{498}$ and MPI libraries. Here, we split the memory requirements and computational workload between $\frac{499}{4}$ 2 OpenMP threads and 64 MPI workers. For the prior initialization, we set an initial number of \sim 22 non-zero mixtures, we let the variance of those mixtures follow a geometric progression to a ₅₀₁ maximum of $1/N$, with N the sample size, and we let the probabilities follow a geometric progression 502 with factor 1/2. The prior probability $1 - \lambda$ of SNP markers being assigned to the 0 mixture is 503 initialized to 99.5%. The SNP marker effect sizes are initialised with 0. Based on the experiments $\frac{504}{2}$ in the UK Biobank imputed dataset, in WGS we set the initial damping factor ρ to 0.1, and adjust $\epsilon_{0.5}$ it to 0.05 for iteration 4 onward, stabilizing the algorithm. We then report the results corresponding

to the iterate having the largest number of SE associations. We also note that, after the first few $\frac{507}{100}$ iterations, the number of SE associations is typically rather stable (see Figure [S4\)](#page-33-0).

gVAMP model parameters for imputed SNP data

We run gVAMP on the 13 UK Biobank phenotypes on the full 8,430,446 SNP set, and on the $\frac{1}{2}$ 2,174,071 and 882,727 LD clumped SNP set. We find that setting the damping factor ρ to 0.1 ϵ ₁₁ performs well for all the 13 outcomes in the UK Biobank that we have considered. For the prior ⁵¹² initialization, we set an initial number of 22 non-zero mixtures, we let the variance of those mixtures $\frac{1}{13}$ follow a geometric progression to a maximum of $1/N$, with N the sample size, and we let the 514 probabilities follow a geometric progression with factor 1/2. The SNP marker effect sizes are 515 initialised with 0. This configuration works well for all phenotypes. We also note that our inference ⁵¹⁶ of the number of mixtures, their probabilities, their variances and the SNP marker effects is not ⁵¹⁷ dependent upon specific starting parameters for the analyses of the $2.174,071$ and $882,727$ SNP $\frac{1}{18}$ datasets, and the algorithm is rather stable for a range of initialization choices. Similarly, the ⁵¹⁹ algorithm is stable for different choices of the damping ρ , as long as said value is not too large. $\frac{520}{20}$

Generally, appropriate starting parameters are not known in advance and this is why we learn 521 them from the data within the EM steps of our algorithm. However, it is known that EM can be 522 sensitive to the starting values given and, thus, we recommend initialising a series of models at 523 different values to check that this is not the case (similar to starting multiple Monte Carlo Markov 524 chains in standard Bayesian methods). The feasibility of this recommendation is guaranteed by the ⁵²⁵ significant speed-up of our algorithm compared to existing approaches, see Supplementary Note 1, $_{526}$ Figure [S5c](#page-36-0). 527

For the sparsity parameter, we consider either initializing it to 50,000 included signals ($\lambda_0 = 528$) 50*,* 000*/P*), or to further increase the probability of SNP markers being assigned to the 0 mixture ⁵²⁹ to 97%, which results in a sparser initialised model. We also consider inflating the variances to a 530 maximum of $10/N$ to allow for an underlying effect size distribution with longer tails. It is trivial to 531 initialise a series of models and to monitor the training R^2 , SNP heritability, and residual variance $\frac{1}{2}$ estimated within each iteration over the first 10 iterations. Given the same data, gVAMP yields 533 estimates that more closely match GMRM when convergence in the training R^2 , SNP heritability, 534 residual variance, and out-of-sample test R^2 are smoothly monotonic within around 10-40 iterations. 535 Following this, training R^2 , SNP heritability, residual variance, and out-of-sample test R^2 may then 536 begin to slightly decrease as the number of iterations becomes large. Thus, as a stopping criterion ⁵³⁷ for the 2,174,071 and 882,727 SNP datasets, we choose the iteration that maximizes the training $\frac{2.588}{2.588}$ $R²$, and in practice it is easy to optimise the algorithm to the data problem at hand.

We highlight the iterative nature of our method. Thus, improved computational speed and $_{540}$ more rapid convergence is achieved by providing better starting values for the SNP marker effects. ⁵⁴¹ Specifically, when moving from 2,174,071 to 8,430,446 SNPs, only columns with correlation $R^2 \geq 0.8$ 542 are being added back into the data. Thus, for the 8,430,446 SNP set, we initialise the model with 543 the converged SNP marker and prior estimates obtained from the 2,174,071 SNP runs, setting to 0 μ the missing markers. Furthermore, we lower the value of the damping factor ρ , with typical values σ being 0.05 and 0.01. We experiment both with using the noise precision from the initial 2,174,071 $\frac{1}{466}$ SNP runs and with setting it to 2. We then choose the model that leads to a smoothly monotonic $\frac{547}{2}$

curve in the training R^2 . We observe that SNP heritability, residual variance, and out-of-sample $\frac{1}{5}$ test R^2 are also smoothly monotonic within 25 iterations. Thus, as a stopping criterion for the $\frac{549}{2}$ 8,430,446 SNP dataset, we choose the estimates obtained after 25 iterations for all the 13 traits. We 550 follow the same process when extending the analyses to include the WES rare burden gene scores. $\frac{551}{200}$

Polygenic risk scores and SNP heritability 552

gVAMP produces SNP effect estimates that can be directly used to create polygenic risk scores. ⁵⁵³ The estimated effect sizes are on the scale of normalised SNP values, i.e., $(X_j - \mu_{X_j})/SD(X_j)$, with 554 μ_{X_j} the column mean and $SD(X_j)$ the standard deviation, and thus SNPs in the out-of-sample 555 prediction data must also be normalized. We provide an option within the gVAMP software to 556 do phenotypic prediction, returning the adjusted prediction R^2 value when given input data of a $\frac{557}{2}$ PLINK file and a corresponding file of phenotypic values. gVAMP estimates the SNP heritability 558 as the phenotypic variance (equal to 1 due to normalization) minus 1 divided by the estimate of the $\frac{555}{2}$ noise precision, i.e., $h_{SNP}^2 = 1 - 1/\gamma_{\epsilon}$.

We compare gVAMP to a MCMC sampler approach $(GMRM)$ with a similar prior (the same $_{561}$ number of starting mixtures) as presented in [\[8\]](#page-25-5). We select this comparison as the MCMC sampler 562 was demonstrated to exhibit the highest genomic prediction accuracy up to date [\[8\]](#page-25-5). We run GMRM 563 for 2000 iterations, taking the last 1800 iterations as the posterior. We calculate the posterior means 564 for the SNP effects and the posterior inclusion probabilities of the SNPs belonging to the non-zero 565 mixture group. GMRM estimates the SNP heritability in each iteration by sampling from an inverse ⁵⁶⁶ χ^2 distribution using the sum of the squared regression coefficient estimates. 567

We also compare gVAMP to the summary statistics prediction methods LDpred2 [\[6\]](#page-25-3) and $\frac{568}{100}$ SBayesR $[7]$ run on the 2,174,071 SNP dataset. In fact, we find that running on the full 8,430,446 $\frac{1}{569}$ SNP set is either computationally infeasible or entirely unstable, and we note that neither approach ⁵⁷⁰ has been applied to data of this scale to date. For SBayesR, following the recommendation on 571 the software webpage (<https://cnsgenomics.com/software/gctb/#SummaryBayesianAlphabet>), ⁵⁷² after splitting the genomic data per chromosomes, we calculate the so-called *shrunk* LD matrix, ⁵⁷³ which use the method proposed by [\[36\]](#page-27-6) to shrink the off-diagonal entries of the sample LD matrix 574 toward zero based on a provided genetic map. We make use of all the default values: $-\epsilon$ genmap-n 575 183, $-\text{ne}$ 11400 and $-\text{shrunk-cutoff}$ 10⁻⁵. Following that, we run the SBayesR software using $\frac{576}{2}$ summary statistics generated via the REGENIE software (see "Mixed linear association testing" 577 below) by grouping several chromosomes in one run. Namely, we run the inference jointly on 578 the following groups of chromosomes: {1}*,* {2}*,* {3}*,* {4}*,* {5*,* 6}*,* {7*,* 8}*,* {9*,* 10*,* 11}*,* {12*,* 13*,* 14} and ⁵⁷⁹ $\{15, 16, 17, 18, 19, 20, 21, 22\}$. This allows to have locally joint inference, while keeping the memory $\frac{1}{580}$ requirements reasonable. All the traits except for Blood cholesterol (CHOL) and Heel bone mineral $\frac{581}{200}$ density T-score (BMD) give non-negative R^2 ; CHOL and BMD are then re-run using the option to $\frac{1}{582}$ remove SNPs based on their GWAS *p*-values (threshold set to 0.4) and the option to filter SNPs 583 based on LD R-Squared (threshold set to 0*.*64). For more details on why one would take such an ⁵⁸⁴ approach, one can check <https://cnsgenomics.com/software/gctb/#FAQ>. As the obtained test 585 $R²$ values are still similar, as a final remedy, we run standard linear regression over the per-group $\frac{1}{586}$ predictors obtained from SBayesR on the training dataset. Following that, using the learned ⁵⁸⁷ parameters, we make a linear combination of the per-group predictors in the test dataset to obtain ⁵⁸⁸

the prediction accuracy given in the table. $\frac{588}{200}$

For LDpred2, following the software recommendations, we create per-chromosome banded LD $_{590}$ matrices with the window size of 3cM. After the analysis of the genome-wide run of LDpred2, we 591 establish that the chains do not converge even after tuning the shrinkage factor, disabling the sign $_{592}$ jump option and disabling the usage of MLE (use_MLE=FALSE option). For this reason, we opt to 593 run LDpred2 per chromosome, in which case the chains converge successfully. Twenty chains with ⁵⁹⁴ different proportion of causal markers are run in the LDpred2 method, for each of the chromosomes 595 independently. Then, a standard linear regression involving predictors from different chromosomes $\frac{596}{2}$ is performed to account for correlations between SNPs on different chromosomes, which achieved 597 better test R^2 than the predictors obtained by stacking chromosomal predictors. In summary, for \sim both LDpred2 and SBayesR we have tried to find the optimal solution to produce the highest $\frac{599}{20}$ possible out-of-sample prediction accuracy, contacting the study authors, if required, for guidance. ⁶⁰⁰

Mixed linear model association testing 601

We conduct mixed linear model association testing using a leave-one-chromosome-out (LOCO) 602 estimation approach on the $8,430,446$ and $2,174,071$ imputed SNP markers. LOCO association ω testing approaches have become the field standard and they are two-stage: a subset of markers 604 is selected for the first stage to create genetic predictors; then, statistical testing is conducted \circ in the second stage for all markers one-at-a-time. We consider REGENIE [\[1\]](#page-25-0), as it is a recent ⁶⁰⁶ commonly applied approach. We also compare to GMRM $[8]$, a Bayesian linear mixture of regressions \sim model that has been shown to outperform REGENIE for LOCO testing. For the first stage of ω LOCO, REGENIE is given 887,060 markers to create the LOCO genetic predictors, even if it is ω recommended to use 0.5 million genetic markers. We compare the number of significant loci obtained 610 from REGENIE to those obtained if one were to replace the LOCO predictors with: (i) those ϵ_{01} obtained from GMRM using the LD pruned sets of 2,174,071 and 887,060 markers; and *(ii)* those ⁶¹² obtained from gVAMP at all $8,430,446$ markers and the LD pruned sets of $2,174,071$ and $887,060$ 613 markers. We note that obtaining predictors from GMRM at all 8,430,446 markers is computationally 614 infeasible, as using the LD pruned set of 2,174,071 markers already takes GMRM several days. In 615 contrast, gVAMP is able to use all $8,430,446$ markers and still be faster than GMRM with the LD $_{616}$ pruned set of $2,174,071$ markers.

LOCO testing does not control for linkage disequilibrium within a chromosome. Thus, to 618 facilitate a simple, fair comparison across methods, we clump the LOCO results obtained with ⁶¹⁹ the following PLINK commands: --clump-kb 5000 --clump-r2 0*.*01 --clump-p1 0*.*00000005. ⁶²⁰ Therefore, within 5Mb windows of the DNA, we calculate the number of independent associations 621 (squared correlation ≤ 0.01) identified by each approach that pass the genome-wide significance $\frac{622}{2}$ testing threshold of $5 \cdot 10^{-8}$. As LOCO can only detect regions of the DNA associated with 623 the phenotype and not specific SNPs, given that it does not control for the surrounding linkage 624 disequilibrium, a comparison of the number of uncorrelated genome-wide significance findings is $\epsilon_{0.55}$ conservative. $\frac{626}{26}$

gVAMP SE association testing 627

We provide an alternative approach to association testing, which we call *state evolution p*-value 628 *testing* (SE association testing), where the effects of each marker can be estimated conditional on all $\frac{629}{2}$ other genetic variants genome-wide. Relying on the properties of the EM-VAMP estimator, whose ⁶³⁰ noise is asymptotically Gaussian due to the Onsager correction [\[12\]](#page-25-12), we have $r_{1,t} \approx \beta + \mathcal{N}(0, \gamma_{1,t}^{-1} I)$, 631 where β is the ground-truth value of the underlying genetic effects vector. More precisely, one can 632 show that $\frac{1}{N} ||\mathbf{r}_{1,t} - \boldsymbol{\beta} - \mathcal{N}(0, \gamma_{1,t}^{-1} \mathbf{I})|| \to 0$, as $N, P \to \infty$, with the ratio N/P being fixed. Therefore, 633 for each marker with index *j*, a one-sided *p*-value for the hypothesis test H0 : $\beta_j = 0$ is given by 634 $\Phi(-|({\bm r}_{1,t})_i|\cdot \gamma_{1,t}^{1/2}),$ where Φ is the CDF of a standard normal distribution and $({\bm r}_{1,t})_i$ denotes the 635 *i*-th component of the vector $r_{1,t}$. We conduct this association testing for height in the WGS data 636 and for the full 8,430,446 imputed SNP markers for the empirical UK Biobank analysis of 13 traits, 637 using the estimates of $r_{1,t}$. We remark that the testing results are generally stable after 20 iterations 638 (Figure [S4\)](#page-33-0). To these, we apply a Bonferroni multiple testing correction to give a conservative ⁶³⁹ comparison for presentation, but we note that the estimates made are joint, rather than marginal, ⁶⁴⁰ and thus FDR control methods may also be an alternative.

Data availability 642

This project uses the UK Biobank data under project number 35520. UK Biobank genotypic and ⁶⁴³ phenotypic data is available through a formal request at (<http://www.ukbiobank.ac.uk>). All ⁶⁴⁴ [s](https://doi.org/xx.xxxx/dryad.xxxxxxxxx)ummary statistic estimates are released publicly on Dryad: [https://doi.org/xx.xxxx/dryad.](https://doi.org/xx.xxxx/dryad.xxxxxxxxx) 645 xxxxxxxx. 646

Code availability 647

The gVAMP code <https://github.com/medical-genomics-group/gVAMP> is fully open source. ⁶⁴⁸ [T](https://github.com/medical-genomics-group/gVAMP)he scripts used to execute the model are available at [https://github.com/medical-genomics-gro](https://github.com/medical-genomics-group/gVAMP)up/ [gVAMP](https://github.com/medical-genomics-group/gVAMP). R version 4.2.1 is available at <https://www.r-project.org/>. PLINK version 1.9 is avail- ⁶⁵⁰ [a](https://github.com/rgcgithub/regenie)ble at <https://www.cog-genomics.org/plink/1.9/>. REGENIE is available at [https://github.](https://github.com/rgcgithub/regenie) 651 [com/rgcgithub/regenie](https://github.com/rgcgithub/regenie). bignspr 1.12.4 package that contains LDpred2 is available at [https://](https://privefl.github.io/bigsnpr/index.html) ⁶⁵² privefl.github.io/bigsnpr/index.html. SBayesR is available at [https://cnsgenomics.com/](https://cnsgenomics.com/software/gctb/#Overview) 653 [software/gctb/#Overview](https://cnsgenomics.com/software/gctb/#Overview). example and the set of the set o

Acknowledgements 655

We would like to thank Malgorzata Borczyk for creating the gene burden scores. We thank Robin 656 Beaumont, Amedeo Roberto Esposito, Gareth Hawkes, Philip Schniter, Matthew Stephens, Pragya 657 Sur, Peter Visscher, Michael Weedon and Harry Wright for providing valuable suggestions and ⁶⁵⁸ comments on earlier versions of the work. We would like to acknowledge the participants and ⁶⁵⁹ investigators of the UK Biobank study. This project was funded by a Lopez-Loreta Prize to MM, ϵ_{60} by an SNSF Eccellenza Grant to MRR (PCEGP3-181181), and by core funding from the Institute 661 of Science and Technology Austria. High-performance computing was supported by the Scientific ⁶⁶² Service Units (SSU) of IST Austria through resources provided by Scientific Computing (SciComp). ⁶⁶³

Author contributions

MM and MRR conceived the study. AD, MM and MRR designed the study. AD derived the model 665 and the algorithm, with input from MM and MRR. AD wrote the software, with input from MM 666 and MRR. AD, JB, MM, and MRR conducted the analysis and wrote the paper. All authors 667 approved the final manuscript prior to submission. $\frac{668}{100}$

Ethical approval declaration 669

This project uses UK Biobank data under project 35520. UK Biobank genotypic and phenotypic ⁶⁷⁰ data is available through a formal request at $http://www.ukbiobank.ac.uk.$ $http://www.ukbiobank.ac.uk.$ The UK Biobank has 671 ethics approval from the North West Multi-centre Research Ethics Committee (MREC). Methods 672 were carried out in accordance with the relevant guidelines and regulations, with informed consent 673 obtained from all participants. ⁶⁷⁴

References

- 1. Mbatchou, J. *et al.* Computationally efficient whole-genome regression for quantitative and binary traits. *Nature Genetics* **53**, 1097–1103 (2021).
- 2. Loh, P.-R. *et al.* Efficient bayesian mixed-model analysis increases association power in large cohorts. *Nature Genetics* **47**, 284–290 (2015).
- 3. Zhou, W. *et al.* Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nature Genetics* **50**, 1335–1341 (2018).
- 4. Jiang, L., Zheng, Z., Fang, H. & Yang, J. A generalized linear mixed model association tool for biobank-scale data. *Nature Genetics* **53**, 1616–1621 (2021).
- 5. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping. *Journal of the Royal Statistical Society Series B: Statistical Methodology* **82**, 1273–1300 (2020).
- 6. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. *Bioinformatics* **36**, 5424–5431 (2020).
- 7. Lloyd-Jones, L. R. *et al.* Improved polygenic prediction by bayesian multiple regression on summary statistics. *Nature Communications* **10**, 5086 (2019).
- 8. Orliac, E. J. *et al.* Improving gwas discovery and genomic prediction accuracy in biobank data. *Proceedings of the National Academy of Sciences* **119**, e2121279119 (2022).
- 9. Spence, J. P., Sinnott-Armstrong, N., Assimes, T. L. & Pritchard, J. K. A flexible modeling and inference framework for estimating variant effect sizes from gwas summary statistics. *bioRxiv* (2022).
- 10. Lawson, D. J. *et al.* Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? *Human Genetics* **139**, 23–41 (2020).
- 11. Donoho, D. L., Maleki, A. & Montanari, A. Message Passing Algorithms for Compressed Sensing. *Proceedings of the National Academy of Sciences* **106**, 18914–18919 (2009).
- 12. Rangan, S., Schniter, P. & Fletcher, A. K. Vector approximate message passing. *IEEE Transactions on Information Theory* **65**, 6664–6684 (2019).
- 13. Feng, O. Y., Venkataramanan, R., Rush, C., Samworth, R. J. *et al.* A unifying tutorial on approximate message passing. *Foundations and Trends® in Machine Learning* **15**, 335–536 (2022).
- 14. Bayati, M. & Montanari, A. The dynamics of message passing on dense graphs, with applications to compressed sensing. *IEEE Transactions on Information Theory* **57**, 764–785 (2011).
- 15. Montanari, A. & Venkataramanan, R. Estimation of low-rank matrices via approximate message passing. *Annals of Statistics* **45**, 321–345 (2021).
- 16. Barbier, J., Krzakala, F., Macris, N., Miolane, L. & Zdeborová, L. Optimal errors and phase transitions in high-dimensional generalized linear models. *Proceedings of the National Academy of Sciences* **116**, 5451–5460 (2019).
- 17. Barbier, J., Camilli, F., Mondelli, M. & Sáenz, M. Fundamental limits in structured principal component analysis and how to reach them. *Proceedings of the National Academy of Sciences* **120** (2023).
- 18. Jeon, C., Ghods, R., Maleki, A. & Studer, C. Optimality of large MIMO detection via approximate message passing. In *IEEE International Symposium on Information Theory*, 1227–1231 (2015).
- 19. Metzler, C. A., Maleki, A. & Baraniuk, R. G. From denoising to compressed sensing. *IEEE Trans. Information Theory* **62**, 5117–5144 (2016).
- 20. Eksioglu, E. M. & Tanc, A. K. Denoising AMP for MRI reconstruction: BM3D-AMP-MRI. *SIAM Journal on Imaging Sciences* **11**, 2090–2109 (2018).
- 21. Zhong, X., Su, C. & Fan, Z. Empirical bayes pca in high dimensions. *Journal of the Royal Statistical Society Series B: Statistical Methodology* **84**, 853–878 (2022).
- 22. Fletcher, A. K. & Schniter, P. Learning and free energies for vector approximate message passing. In *2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 4247–4251 (2017).
- 23. Fletcher, A. K., Sahraee-Ardakan, M., Rangan, S. & Schniter, P. Rigorous dynamics and consistent estimation in arbitrarily conditioned linear systems. In *Advances in Neural Information Processing Systems*, vol. 30 (2017).
- 24. Yengo, L. *et al.* A saturated map of common genetic variants associated with human height. *Nature* **610**, 704–712 (2022).
- 25. Wainschtein, P. *et al.* Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. *Nature Genetics* **54**, 263–273 (2022).
- 26. Robinson, M. R. *et al.* Genotype–covariate interaction effects and the heritability of adult body mass index. *Nature Genetics* **49**, 1174–1181 (2017).
- 27. Zeng, J. *et al.* Widespread signatures of natural selection across human complex traits and functional genomic categories. *Nature Communications* **12**, 1164 (2021).
- 28. Hindorff, L. A. *et al.* Prioritizing diversity in human genomics research. *Nature Reviews Genetics* **19**, 175–185 (2018).
- 29. Campos, A. I. *et al.* Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores. *Nature Genetics* **55**, 1769–1776 (2023).

- 30. Krzakala, F., Mézard, M., Sausset, F., Sun, Y. & Zdeborová, L. Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. *Journal of Statistical Mechanics: Theory and Experiment* **2012**, P08009 (2012).
- 31. Skuratovs, N. & Davies, M. E. Warm-starting in message passing algorithms. In *2022 IEEE International Symposium on Information Theory (ISIT)*, 1187–1192 (2022).
- 32. Hutchinson, M. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. *Communications in Statistics - Simulation and Computation* **19**, 433–450 (1990).
- 33. Vila, J., Schniter, P., Rangan, S., Krzakala, F. & Zdeborová, L. Adaptive damping and mean removal for the generalized approximate message passing algorithm. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2021–2025 (2015).
- 34. Vila, J. & Schniter, P. Expectation-maximization gaussian-mixture approximate message passing. *IEEE Transactions on Signal Processing* **61** (2012).
- 35. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203–209 (2018).
- 36. Wen, X. & Stephens, M. Using linear predictors to impute allele frequencies from summary or pooled genotype data. *The Annals of Applied Statistics* **4**, 1158 – 1182 (2010).
- 37. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. *Nature Genetics* **46**, 100–106 (2014).
- 38. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk of disease using a genome-wide approach. *PLOS ONE* **3**, 1–8 (2008).
- 39. Patxot, M. *et al.* Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits. *Nature Communications* **12**, 6972 (2021).

Supplementary information

Joint modelling of whole genome sequence data for human height via approximate message passing

Al Depope, Jakub Bajzik, Marco Mondelli, Matthew R. Robinson

Supplementary Tables

Table S1. The 13 **UK Biobank traits used within the study**. Phenotypic names and their codes used in the study. The sample size, *N*, gives the number of individuals with training data measures.

Supplementary Figures

Figure S1. Whole genome sequence variants discovered at two different significance thresholds that are not discovered in imputed SNP data can have multiple neighbouring imputed SNPs that are discovered as significantly height associated. For each whole genome sequence variant discovered as height associated at $p \leq 5 \cdot 10^{-8}$ or $p \leq 5 \cdot 10^{-7}$, we determine the number of imputed SNPs determined to be significantly height associated at the same significance level, for a base-pair distance of either 5kb, 50kb, 100kb, or 250kb from the focal WGS variant. We observe that most WGS findings have 0 neighboring findings in close proximity, but can have multiple neighboring significant imputed variant findings at distance.

made available under [aCC-BY 4.0 International license.](http://creativecommons.org/licenses/by/4.0/) (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is bioRxiv preprint doi: [https://doi.org/10.1101/2023.09.14.557703;](https://doi.org/10.1101/2023.09.14.557703) this version posted July 4, 2024. The copyright holder for this preprint

Figure S2. The variance attributable to gene burden scores calculated from whole exome sequence data (y-axis) shows no relationship to the variance attributable to DNA variants within and around the gene (x-axis) for either imputed SNPs or whole genome sequence variants.

Figure S3. SNP heritability estimation of GMRM versus gVAMP with different numbers of SNP markers across 13 trait in the UK Biobank. Comparison of the proportion of phenotypic variation attributable to 2,174,071 autosomal SNP genetic markers (SNP heritability) estimated by GMRM (*x*-axis) to the SNP heritability estimated by gVAMP (*y*-axis) at either the same 2,174,071 SNPs (red) or 8,430,446 SNP markers (blue). The slope of the lines shows a 1-to-1 relationship of gVAMP to GMRM, but with an average of 3.4% lower estimate for gVAMP at 2.17M SNPs. Analysing 8.4M SNPs with gVAMP increases the heritability estimate over GMRM by 3.9%, which is consistent with an increase in phenotypic variance captured by the full imputed sequence data, as opposed to a selected subset of SNP markers. The dashed grey line gives $y = x$.

Figure S4. Convergence of SE *p***-value testing with increasing number of iterations for 13 UK Biobank traits.** AMP theory provides a joint association testing framework, capable of estimating the effects of each genomic position conditional on all other SNP markers. We show this SE *p*-value testing approach for each iteration of our iterative algorithm, where we calculate the number of genome-wide fine-mapped associations for 13 UK Biobank traits at a *p*-value threshold of less than 5 · 10[−]⁸ for all 8,430,446 SNP markers.

Supplementary Note 1

Simulation study methods

To support our empirical analyses we conduct a simulation study using the 8,430,446 UK Biobank genetic marker data with 414,055 individuals. We randomly sample 40,000 causal variants genomewide to give a highly polygenic genetic basis. To these, we allocate effect sizes from a Gaussian with mean zero and variance 0*.*5*/*40000, where 0*.*5 is the proportion of variance attributable to the SNP markers (SNP heritability). Multiplying the simulated SNP effects by normalized values of the 40,000 causal markers, gives a vector of genetic values of length $N = 414055$ with variance 0.5. To this we add a vector of noise, drawn from a Gaussian with mean zero and variance 0.5, to produce a response variable of length *N*, with zero mean and unit variance.

We analyse the simulated response variable with gVAMP, using either 8,430,446, 2,174,071 or 887,060 SNP markers with identical initialisation to that described in the Methods for the empirical UK Biobank study. We also analyse the data with GMRM using 2,174,071 or 887,060 SNP markers (as this completes within reasonable compute time and resource use), running for 2,500 iterations with 500 iteration burn in. Finally, we run REGENIE using 887,060 SNP markers for the first stage and 8,430,446 SNP markers for the second stage LOCO testing.

We begin by comparing the LOCO association testing results obtained by REGENIE to those obtained by replacing the REGENIE predictors with predictors obtained from GMRM using 2,174,071 markers and gVAMP using either 8,430,446, 2,174,071 or 887,060 SNP markers within the gVAMP software.

To facilitate a simple, fair comparison of the true positive rate (TPR) and false discovery rate (FDR) across methods, we clump the LOCO results obtained with the following PLINK commands: --clump-kb 5000 --clump-r2 0*.*01 --clump-p1 0*.*00000005. Therefore, within 5Mb windows of the DNA, we calculate the number of independent associations (squared correlation ≤ 0*.*01) identified by each approach that pass the genome-wide significance testing threshold of $5 \cdot 10^{-8}$. This is the same procedure performed for MLMA testing (see "Mixed linear model association testing" in the Methods). For each identified genome-wide significant association, we then ask if it is correlated (squared correlation ≥ 0.01) to a causal variant: if so, we classify it as a true positive; otherwise, we classify it as a false positive. The true positive rate is calculated as the number of true positives divided by the total number of simulated causal variants, and it is also known as the recall, or sensitivity, reflecting the power of a statistical test. The false discovery rate is calculated as the number of false positives divided by the number of genome-wide significant associations, and it is a measure of the proportion of discoveries that are false. As genome-wide association studies aim to detect regions of the DNA associated with the phenotype, the definition of a false discovery as the detection of a variant at genome-wide significance when that variant has squared correlation ≤ 0.01 with a causal variant within 5Mb is a very conservative one. We present these results in Figure [S5a](#page-36-0).

We then compare the out-of-sample prediction accuracy and the SNP heritability estimated by GMRM with that obtained by gVAMP, following the same procedures outlined in the Methods for the empirical UK Biobank analysis. For the out-of-sample prediction, we use a hold-out set of 15,000 individuals that are unrelated (SNP marker relatedness *<* 0*.*05) to the training individuals. We present these results in Figure [S5b](#page-36-0).

We conduct five simulation replicates, as we find that this is sufficient to contrast methods, with GMRM and gVAMP giving very consistent estimates across replicates, and REGENIE being highly variable. We compare the run time for the first stage analysis of REGENIE to the total run times of gVAMP and GMRM across different marker sets using 50 CPU from a single AMD compute node. We present these run time results in Figure [S5c](#page-36-0).

Additionally, we compare the SE *p*-value testing results of gVAMP on the 8,430,446 and 2,174,071 SNP datasets to the posterior inclusion probabilities calculated for each SNP using GMRM. The theoretical expectation is that both methods should yield broadly similar results, but in practice *p*-value association testing and posterior inclusion probability testing are not easily comparable. Thus, we simply present TPR and FDR calculations for these models at different significance thresholds in Figure [S8.](#page-39-0) A true positive is defined as an SNP that *(i)* has a test statistic passing the threshold, and *(ii)* is a true causal variant. This reflects power to localise marker effects to the single-locus level. A false discovery is classified as a SNP that *(i)* has a test statistic passing the threshold, and *(ii)* is not the exact true causal variant. Our objective here is to simply explore the power and FDR of the SE testing across a range of thresholds. We avoid prescribing specific significance thresholds, leaving this as a choice for practitioners.

To support our findings further, we repeat our simulation again but we randomly select 40,000 causal variants from the 887,060 markers. Our objective is to compare REGENIE and gVAMP in the scenario where the causal variants are present in the data used to create the predictors for the first step of LOCO. This ensures that our findings are not just driven by only having SNPs correlated with the causal variants in step 1. Additionally, as well as simulating the causal marker effects from a Gaussian, we also simulate them from a mixture of Gaussians. Specifically, we simulate effect sizes for the 40,000 causal variants from a mixture of three Gaussian distributions with probabilities 1*/*2*,* 1*/*3*,* 1*/*6 and variances 0.5/40,000, 5/40,000, 50/40,000. Multiplying the simulated SNP effects by the normalized values of the 40,000 causal markers gives a vector of genetic values of length $N = 414,055$ with variance 0.5. To this we add a vector of noise, drawn from a Gaussian with mean zero and variance 0.5, to produce a response variable of length *N*, with zero mean and unit variance. We conduct five simulation replicates for the Gaussian effect size setting and five for the mixture setting, because we again find that this is sufficient to contrast methods, with gVAMP giving very consistent estimates across replicates and REGENIE being highly variable. We present these results to compare the TPR and FDR of REGENIE with that of gVAMP in Figure [S6.](#page-37-0)

Finally, we repeat our simulation once more but we randomly select 40,000 causal variants from the 2,174,071 SNP data. Our objective is to compare GMRM and gVAMP to empirically assess the Bayes optimality of gVAMP when applied to genomic data. We simulate the causal marker effects from both a Gaussian and a mixture of Gaussians, and compare SNP heritability of the two methods under these different effect size distributions. We present these results in Figure [S7.](#page-38-0)

Simulation study results

We start by discussing the LOCO testing results for the setting in which 40,000 SNP markers are randomly selected from the full set of 8,430,446 SNPs. We find that gVAMP performs similarly to the individual-level Bayesian approach of GMRM in true positive rate (TPR), whilst controlling the false discovery rate (FDR) below the 5% level (Figure [S5a](#page-36-0)). Both approaches outperform the

Figure S5. Simulation study of association testing power and run time using UK Biobank genotype data. We consider 8,430,446 SNP markers, randomly select 40,000 as causal and use these to simulate a phenotype. Standard leave-one-chromosome-out (LOCO) association testing approaches are two-stage, with a subset of markers selected for the first stage. Here we select either all markers, 2,174,071 markers, or 887,060 markers for the first stage and then use all markers for the second stage LOCO testing. In *(a)*, we apply gVAMP, REGENIE, or GMRM to these data and calculate the true positive rate (TPR) and the false discovery rate (FDR). In the first stage, we set REGENIE to utilize only 887,060 markers, despite only 500,000 being recommended (see <https://rgcgithub.github.io/regenie/faq/>), GMRM up to 2,174,071 markers, whilst gVAMP can utilise the full range. The FDR is well controlled at 5% or less for both gVAMP and GMRM, but not for REGENIE. Power (TPR) is higher for gVAMP and GMRM as compared to REGENIE. For *(b)*, we compare out-of-sample prediction accuracy for polygenic risk scores created at different sets of markers from gVAMP (8,430,446 and 2,174,071) and GMRM (2,174,071). *(c)* gives the run time in hours for the first stage analysis of gVAMP, REGENIE, and GMRM, across different marker sets using 50 CPU from a single compute node. gVAMP takes 2*/*3 of the time of a single-trait analysis in REGENIE using 887,060 markers, remains faster then REGENIE using 2,174,071 markers, and is the only approach capable of analysing 8,430,446 markers jointly within 24 hours.

commonly used REGENIE software in both TPR and FDR, which does not always control the FDR below 5% (Figure [S5a](#page-36-0)). We repeat our simulation by selecting 40,000 causal SNPs from the 887,060 marker subset so that the causal variants are within the set used for the first step of all methods, finding that the results remain the same across two different effect size distributions (Figure [S6\)](#page-37-0). Thus, power and accuracy are higher for gVAMP and GMRM as compared to REGENIE for two reasons: *(i)* given the same data, the models show improved performance (Figure [S6\)](#page-37-0), and *(ii)*

Figure S6. Comparison of gVAMP and REGENIE association testing within identical data. True positive rate (TPR) and false discovery rate (FDR) for leave-one-chromosome-out (LOCO) testing where 887,060 markers are used for both the first step of REGENIE and for gVAMP and where all simulated causal variants are contained within this set. LOCO testing is then conducted over the full set of 8,430,446 SNP markers. "S1" refers to causal variant effects simulated from a Gaussian distribution; "S2" refers to causal variant effects whose distribution is a mixture of Gaussians. We perform five simulation replicates.

more SNP markers can be utilised to create the predictors, with the benefit of controlling for all genome-wide effects rather than a subset, which in turn controls the FDR (Figure [S5a](#page-36-0) and [S6\)](#page-37-0).

For MLMA, association testing power (TPR) depends upon the sample size and the out-ofsample prediction accuracy of the predictors obtained from the first step [\[37\]](#page-27-7). For gVAMP to have Bayes-optimal empirical performance, polygenic risk score prediction accuracy should match that of GMRM. When simulating data by selecting 40,000 causal markers from 8,430,446 imputed SNP markers and then only using a subset of 2,174,071 markers for analysis, we find that gVAMP loses only 0.5% to 1% accuracy over GMRM. However, we highlight that, by analysing all 8,430,446 imputed SNP markers, gVAMP improves over GMRM (Figure [S5b](#page-36-0)). We note that analysing all 8,430,446 SNPs is computationally infeasible for GMRM.

A key feature of gVAMP is its computational efficiency, which allows for joint processing of the full set of 8,430,446 markers. gVAMP completes in 2*/*3 of the time of REGENIE given the same data and compute resources, and it is dramatically faster (12*.*5× speed-up) than the MCMC sampling algorithm GMRM; even with 8,430,446 imputed SNP markers, the model yields estimates in under a day (Figure [S5c](#page-36-0)).

Polygenic risk score prediction accuracy depends upon h_{SNP}^2 , the number of true underlying causal variants and the sample size [\[38\]](#page-27-8), which are fixed in our simulation. When simulating effects over 40,000 SNPs randomly selected from 8,430,446 markers and then using only a subset of 2,174,071 markers to estimate h_{SNP}^2 , both gVAMP and GMRM give estimates that are lower than the simulated value, which is expected as all causal variants are not given to the model (Figure [S7\)](#page-38-0). gVAMP gives correct estimates when given the full 8,430,446 markers and when we repeat

Figure S7. SNP heritability estimation of GMRM versus gVAMP with different numbers of SNP markers in the simulation. Comparison of the proportion of phenotypic variation attributable to either 8,430,446 or a subset of 2,174,071 autosomal single nucleotide polymorphism (SNP) genetic markers (SNP heritability) estimated by GMRM and gVAMP. We consider three simulation scenarios: "8M" represents the scenario of 40,000 causal SNP markers randomly selected from 8,430,446 total SNPs with effects sampled from a Gaussian distribution and total SNP heritability of 0.5; "S1" represents the scenario of 40,000 causal SNPs randomly selected from 2,174,071 total SNPs with effects sampled from a Gaussian distribution and total SNP heritability of 0.5; and finally "S2" represents the scenario of 40,000 causal SNPs randomly selected from 2,174,071 total SNPs with effects sampled from a mixture of Gaussians and total SNP heritability of 0.5. Points give the posterior means for GMRM and the convergence of gVAMP from five simulation replicates. Analysing 8,430,446 SNPs with gVAMP increases the heritability estimate over GMRM. This is consistent with an increase in phenotypic variance captured by the full imputed sequence data, as opposed to analyzing a selected subset of SNP markers, in which case gVAMP estimates are lower than those obtained from GMRM. Given the same data containing all the causal variants, the algorithms perform similarly irrespective of the underlying effect size distributions ("S1" and "S2").

the simulations selecting 40,000 causal variants from 2,174,071 markers, gVAMP and GMRM give identical inference under both Gaussian and a mixture of Gaussian effect size distributions (Figure [S7\)](#page-38-0).

gVAMP provides an alternative approach to association testing where the effects of each marker can be estimated conditional on all other genetic variants genome-wide (see "gVAMP SE association testing" in the Methods). The expectation is that SE association testing should yield broadly similar results to posterior inclusion probability testing from Bayesian fine-mapping approaches. Fine-mapping approaches have been developed to overcome the issue that individual-level Bayesian methods cannot be applied to full sequence data and have similar priors to GMRM, thus we restrict our comparison to this method. GMRM has previously been shown to outperform other Bayesian fine-mapping approaches [\[39\]](#page-27-9).

Comparing gVAMP to GMRM at 2,174,071 SNP markers, as GMRM cannot analyse more than this within reasonable time frames, we find that, for significance thresholds of $p \leq 0.005$, the FDR is controlled at $\leq 5\%$, with greater power than GMRM posterior inclusion probabilities (Figure [S8\)](#page-39-0). For 8,430,446 imputed SNP markers, stronger linkage disequilibrium limits the assignment of

Figure S8. Whole genome fine-mapping of gVAMP in a simulation study using UK Biobank genotype data. True positive rate (TPR) and false discovery rate (FDR) of SE association testing at 2,174,071 and 8,430,446 markers for different significance thresholds. We then compare this to the TPR and FDR of genome-wide fine-mapping using the posterior inclusion probability of each SNP generated by GMRM. For significance thresholds of $p \leq 0.005$, the FDR is controlled at $\leq 5\%$, with greater power than GMRM posterior inclusion probabilities.

significance to the single-marker resolution, reducing the TPR, but FDR improves as effects are resolved to the correct single-marker level when all causal variants are within the data (Figure [S8\)](#page-39-0), supporting our main results. Thus, our algorithm facilitates individual-level (and summary-level) Bayesian methods to be applied to all variants jointly at scale, so that genetic variant effects can be localised to single-locus resolution conditional on all other genetic variants within a cohort.

Supplementary Note 2

Onsager correction calculation

In order to ensure Gaussianity of residuals, gVAMP calculates the so-called Onsager correction based on (5) . For such calculation, the derivative of the denoising function f_t defined in (3) is required. Let us denote the numerator and denominator of [\(4\)](#page-13-2) with $Num(r_1)$ and $Den(r_1)$, respectively. Then,

$$
\frac{\partial \text{Num}(r_1)}{\partial r_1} = \lambda_t \cdot \sum_{l=1}^L \pi_{t,l} \cdot \frac{\sigma_{t,l}^2}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)^{3/2}} \cdot \text{EXP}(\sigma_{t,l}^2) \cdot \left[1 - r_1^2 \cdot \frac{(\sigma_{t,*}^2 - \sigma_{t,l}^2)}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)(\gamma_{1,t}^{-1} + \sigma_{t,*}^2)}\right],
$$

$$
\frac{\partial \text{Den}(r_1)}{\partial r_1} = -r_1 \cdot \left[\lambda_t \cdot \sum_{l=1}^L \frac{\pi_{t,l}}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)} \cdot \frac{\sigma_{t,*}^2 - \sigma_{t,l}^2}{(\gamma_{1,t}^{-1} + \sigma_{t,l}^2)(\gamma_{1,t}^{-1} + \sigma_{t,*}^2)} \cdot \text{EXP}(\sigma_{t,l}^2) \right. \\ \left. + (1 - \lambda_t) \cdot \frac{\gamma_{1,t}^{3/2} \cdot \sigma_{t,*}^2}{(\gamma_{1,t}^{-1} + \sigma_{t,*}^2)} \cdot \text{EXP}(0) \right].
$$

Thus, the Onsager correction reads

$$
\frac{\partial}{\partial r_1} \left(\frac{\text{Num}(r_1)}{\text{Den}(r_1)} \right) = \frac{\frac{\partial}{\partial r_1} \text{Num}(r_1)}{\text{Den}(r_1)} - \frac{\text{Num}(r_1) \cdot \frac{\partial}{\partial r_1} \text{Den}(r_1)}{(\text{Den}(r_1))^2}.
$$

Conjugate gradient algorithm for solving linear systems

Algorithm 2 Conjugate gradient method for solving a symmetric linear system $Ax = b$.

1: **Input:** Initial estimate of the solution x_0 , initial residual $r_0 = b$, initial search direction $p_0 = r_0$, linear system matrix *A*, right-hand side vector *b*, stopping error threshold $\varepsilon > 0$. 2: **for** $n = 1, 2, 3, \ldots$ **do** 3: $\alpha_n = \frac{r_{n-1}^T r_{n-1}}{n^T \cdot 4n}$ $\overline{p}_{n-1}^T A p_{n-1}$ 4: $\bm{x}_n = \vec{x}_{n-1} + \alpha_n \bm{p}_{n-1}$ 5: $\boldsymbol{r}_n = \boldsymbol{r}_{n-1} - \alpha_n \boldsymbol{A} \boldsymbol{p}_{n-1}$ 6: $\beta_n = \frac{r_n^T r_n}{r^T r_n}$ $\overline{r^T_{n-1} r_{n-1}}$ 7: $p_n = r_n + \beta_n p_{n-1}$ 8: **If** $n \ge 1$ and $||x_n - x_{n-1}||_2 / ||x_n||_2 < \varepsilon$, then **break** 9: **end for** 10: **return** *xⁿ*